
Usage of gitolite on lia server

Repository handling easy

LIA
Universidade de Vigo
Escola Superior de Enxeñarı́a Informática
E–32004 Ourense

http://lia.ei.uvigo.es
mailto:formella@uvigo.es

Contact: Arno Formella

Reference: M-40100-gitonlia
Version: 1.3

Date: 01/04/2016
Pages: 12

http://lia.ei.uvigo.es
mailto:formella@uvigo.es

Usage of gitolite on lia server (v1.3)
Contents

Page
2 of 12

Contents

1 Introduction 3
1.1 Purpose . 3
1.2 Scope . 3
1.3 Revision history . 3
1.4 Applicable and reference documents . 3
1.5 Document overview . 4

2 Overview 4
2.1 Concept . 4
2.2 Naming and writing conventions . 4
2.3 Machines . 4
2.4 Roles . 5

3 Prerequisites 5

4 ssh issues 6
4.1 Authorization . 6
4.2 Key generation . 6
4.3 Security aspects . 6

5 Repository set-up 7
5.1 Creating hosting user . 7
5.2 Installing gitolite . 7
5.3 Administrating the hosting user . 7
5.4 Adding repository users . 8
5.5 Configuring access rights to repository users 8
5.6 Adding/deleting repositories . 9
5.7 Some further actions . 10

6 User’s point of view 10
6.1 Becoming a user . 10
6.2 Available commands . 10
6.3 A note on filenames . 11
6.4 A note on directory structure . 11
6.5 Trouble shooting . 11

6.5.1 Dangling old keys . 11
6.5.2 Dangling old hostnames . 12
6.5.3 Copying of hostusr after system update 12

Usage of gitolite on lia server (v1.3)
1 Introduction

Page
3 of 12

1 Introduction

This document is part of the software management documents of the research group LIA.

1.1 Purpose

This document has been written for a system administrator both to install and to maintain a
revision control system for software (and related documents) on a server platform, and for a
user of the repositories to access the files. The revision control system used is git and gitolite.

1.2 Scope

This document describes in detail the steps to be performed in order to install a git-server
based on gitolite as a revision control system. The repositories on the server can be accessed
by different remote or local users with possibly different, individual access rights. The entire
process is described as an installation tutorial.

The document does not replace the manuals of the different software tools that are used. It is
just a short description of what should be done at least to set-up the revision control system on
the server machine and to provide access for different users with individual access rights to its
content. Any further information should be taken from the corresponding documentation of the
software tools (see applicable documents 1.4).

1.3 Revision history
1.3

• Trouble shooting section re-organized and extended.
1.2

• Document number changed to make it for general use in LIA.
• A note on directory structure section added.
• Small extensions and writing revision.

1.1

• Trouble shooting section added.
• This revision history part added.

1.0
This is the initial document.

1.4 Applicable and reference documents

The basic manuals for the different software tools that the interested user and responsible sys-
tem administrator should read can be found at:

• gitolite documentation: http://gitolite.com/gitolite/gitolite.html

• git documentation: http://git-scm.com/documentation

• ssh documentation: http://www.openssh.org/, for instance.

http://gitolite.com/gitolite/gitolite.html
http://git-scm.com/documentation
http://www.openssh.org/

Usage of gitolite on lia server (v1.3)
2 Overview

Page
4 of 12

1.5 Document overview

Section 2 gives an overview of the concept of the repository management, introduces some
naming conventions used in this document, and provides some notion of machines and roles
users can play.

Section 3 details what previously must be available on the hosting machine, i.e., the server, so
you can use gitolite conveniently.

Section 4 tells what parts of ssh play an important role in the set-up.

Section 5 describes how the repository managing system is set-up and maintained.

Section 6 shows what users of the repositories can do and where they get more information.

2 Overview

2.1 Concept

gitolite provides a simple means to provide controlled access to several git repositories for a set
of, possibly remote, users.

gitolite needs only one hosting user on the server machine.

gitolite itself uses git to manage the git repositories and the user configuration.

Administration can be shared among different users, playing the role of an administrator, as
well.

2.2 Naming and writing conventions

We use boldface typewriter font in the running text to indicate names for machines or
users that must be replaced by the correct names in your installation environment.

We use typewriter font for input and output of commands run in a shell. An input com-
mand is prefixed either with xxx@server: or xxx@client: depending whether the command
should be introduced on the server or the client machine. The xxx stands for the corresponding
user to input the command. Output of commands have no prefix.

Sequences of commands are grouped in blocks and there is a preceding line number, so the
explaining text can refer to a specific line.

2.3 Machines

We distinguish two logical types of machines:

server machine: Any machine where the centralized revision control system will be installed.
We use server as name for the server machine.

client machine: Any machine from which some user connects to the server machine, either to
administrate or to use the revision control system and its repositories. We use client as
name for some client machine.

Usage of gitolite on lia server (v1.3)
3 Prerequisites

Page
5 of 12

Note that the server machine and the client machine can be the same physical machine.

2.4 Roles

We distinguish four logical roles of users:

system administrator: A user on the server machine with administrator rights. We use admin
as name (login) for the administration user.

hosting user: The user on the server machine that hosts the repositories. We use hostusr as
name (login) for the hosting user.

repository administrator: A user on any machine with access rights to the hosting user such
that he/she can administrate the control revision system. We use director as name
(login) for a repository administrator.

repository user: A user on any machine with access rights to (some) repositories hold by the
hosting user. We distinguish here two levels of repository users: leaders that will have
read/write access to a set of repositories and workers that will have only read/write to one
repository. We use leader and worker as names (logins) for some repository users.

Note that actual users may play different roles depending on their access rights granted. The
distinction between leaders and workers is just an example, maybe in your project environments
more or less levels are convenient, e.g., you might want to add observers being users with
only read access to repositories.

3 Prerequisites

We assume that the software tools ssh, git, and perl are already installed on the server machine.
See the current software manuals for gitolite on required cross-compatibility issues for these
software tools.

On writing this document, we worked with (output of version information):

1 admin@server: ssh -v
2 OpenSSH_5.3p1 Debian-3ubuntu7, OpenSSL 0.9.8k 25 Mar 2009
3

4 admin@server: git --version
5 git version 1.7.8
6

7 admin@server: perl --version
8

9 This is perl, v5.10.1 (*) built for i486-linux-gnu-thread-multi

You must have administrator rights on the server machine, at least to add the hosting user.

Usage of gitolite on lia server (v1.3)
4 ssh issues

Page
6 of 12

4 ssh issues

4.1 Authorization

The server should allow for password less public key authentication, i.e., in the ssh-daemon
configuration file (usually /etc/ssh/sshd config the entries RSAAuthentication and
PublickeyAuthentication should be set both to yes.

4.2 Key generation

Use the ssh-utility program ssh-keygen to generate a key pair with private and public part:

1 $ ssh-keygen -C rep-user@client

You get something similar to the following output and the files are stored on your system:

1 Generating public/private rsa key pair.
2 Enter file in which to save the key (/home/rep-user/.ssh/id_rsa):
3 Enter passphrase (empty for no passphrase):
4 Enter same passphrase again:
5 Your identification has been saved in /home/rep-user/.ssh/id_rsa.
6 Your public key has been saved in /home/rep-user/.ssh/id_rsa.pub.
7 The key fingerprint is:
8 1c:55:e8:81:4b:d9:da:77:17:42:56:86:26:54:f5:27 rep-user@client
9 The key’s randomart image is:

10 +--[RSA 2048]----+
11 | .++ |
12 | .o= . |
13 | * S |
14 | + o . J |
15 | B = S |
16 | * + . |
17 | E o |
18 | . . |
19 | |
20 +-----------------+

Keep the private key totally secret as user on the client machine. No one ever should have
access to that part of the key pair, besides you and your trusted tools.

4.3 Security aspects

gitolite performs just authorization, not authentication, i.e., it is not checked whether the one
claiming to be a certain user really is that user, rather access is granted to anyone presenting a
valid private key, i.e., a key being a matching key of one of the public keys stored in the system.

Users of the repositories at most get access for a restricted number of actions executable on the
repository. So even if the key is compromised, no shell access is granted to the server.

Usage of gitolite on lia server (v1.3)
5 Repository set-up

Page
7 of 12

5 Repository set-up

5.1 Creating hosting user

Create the user on the server machine and set restrictive access rights on her home directory.

1 admin@server: sudo adduser hostusr
2 ...
3 admin@server: sudo chmod 700 /home/hostusr

In line 2 you will be asked more data for the user to be added, especially the password will be
asked.

Login as user hostusr and create a bin directory for local user commands and prepend it to
the $PATH environment variable.

1 admin@server: su hostusr
2 ...
3 hostusr@server: cd
4 hostusr@server: mkdir bin
5 hostusr@server: echo "export PATH=$HOME/bin:$PATH" >> .bashrc
6 hostusr@server: source .bashrc

In line 2 you will be asked the password of the hosting user.

5.2 Installing gitolite

We assume that the repository administrator (here director) has already generated an ssh-
key pair (see Section 4.2).

Still logged in as hosting user, clone the gitolite software from github (https://github
.com/sitaramc/gitolite), install the gitolite-executable in the executable–path of the
hosting user, copy the public key of a repository administrator, and provide access for at least
this repository administrator setting up gitolite:

1 hostusr@server: git clone git://github.com/sitaramc/gitolite
2 hostusr@server: gitolite/install -ln /home/hostusr/bin
3 hostusr@server: scp <director.pub> director.pub
4 ...
5 hostusr@server: gitolite setup -pk director.pub

where director.pub might be any public key file, possibly on a remote machine, of a user
who plays the role of an administrator of the hosting user. In line 4 you will be asked the
password to access the public key file of the repository administrator on the corresponding
machine.

Now you leave the server machine.

5.3 Administrating the hosting user

If you are a user to administrate the hosting user, e.g., your public key file was used in the
setup command of gitolite in Section 5.2, then on your client machine (which can be the same

https://github.com/sitaramc/gitolite
https://github.com/sitaramc/gitolite

Usage of gitolite on lia server (v1.3)
5 Repository set-up

Page
8 of 12

machine as the server machine)—possibly somewhere down a path you like—run:

1 director@client: git clone hostusr@server:gitolite-admin

Note that server stands for the name of the server machine where the hosting user has been
created (see Section 5.1).

From now on you execute all administrative work in the directory gitolite-admin as al-
ways when working with a git-managed environment. You basically find there two directories
keydir, which holds the access keys for all users, and conf, which holds the configuration
set-up.

Once you finished, you commit your changes and push them to the server.

Afterwards, either you delete your working area (and clone again if needed in the future),
or you just keep the gitolite-admin sandbox for future issues. However, take care to pull
before you proceed in the future whenever there exist other administrative users that have might
changed the repository inbetween.

5.4 Adding repository users

Add to the key-directory named keydir the public keys of the users who should have access
to the repositories managed by the hosting user.

The public key files should be organized by hostnames and usernames. As said the repository
users are named leader and worker, assume they need to have access from three machines
where they usually work, say leader at office and at home, and worker at office and at
laptop, then their public key files from the corresponding machines should be organized as:

1 keydir/director.pub
2 keydir/home/leader.pub
3 keydir/laptop/worker.pub
4 keydir/office/leader.pub
5 keydir/office/worker.pub

Note that the important information is just a pair (name/key) (in the example, for instance, the
user worker and one of the keys in the files named worker.pub), i.e., the user worker can
get access to the repositories whenever the access via ssh uses worker as name and provides
one of the keys stored under keydir named worker.pub.

5.5 Configuring access rights to repository users

As administrator user, edit the configuration file gitolite.conf in the conf directory to
define the user and repository groups and to grant access rights of users or groups of users to
repositories or groups of repositories.

1 # We distinguish three levels of users.
2 @manager = manager_1 manager_2
3 @leader = leader_1 leader_2
4 @worker = worker_1 worker_2 worker_3
5

6 # All the managers have complete administrative access.
7 repo gitolite-admin
8 RW+ = @manager

Usage of gitolite on lia server (v1.3)
5 Repository set-up

Page
9 of 12

9 # All users have complete access to the testing repository.
10 repo testing
11 RW+ = @all
12

13 # A possible access rights distribution among the participants.
14 repo project_1
15 RW+ = @leader_1
16 R = @leader_2
17 RW+ = @worker_1
18 R = @worker_2
19

20 repo project_2
21 RW+ = @leader_2
22 R = @leader_1
23 RW+ = @worker_2
24 RW+ = @worker_3

Note that there exists the predefined group @all both for users and for repositories (the distinc-
tion is clear from the context).

Commit and push the changes to the server.

5.6 Adding/deleting repositories

To add a new repository add the corresponding lines to the configuration file gitolite.conf
in the conf directory, for instance, a third project led by leader 1:

1 ...
2 repo project_3
3 RW+ = @leader_1
4 R = @leader_2
5 RW+ = @worker_3

Commit and push the changes to the server. The corresponding bare repositories will be gener-
ated automatically.

To move an existing repository on your client site to the server, make sure your repository is all
correct, create a corresponding bare repository on the server as described above, and push the
repository:

1 git push --all hostusr@server:repository-name
2 git push --tags hostusr@server:repository-name

To delete a repository on the server, just remove the corresponding lines for this repository from
the configuration file gitolite.conf in the conf directory. However note: the data is still not
deleted, you just have removed the access rights, so no one can read/write the old repository.

Commit and push the changes to the server.

If you really want to remove the data, you must connect as hosting user to the server and remove
the correponding directory tree on the server.

Usage of gitolite on lia server (v1.3)
6 User’s point of view

Page
10 of 12

5.7 Some further actions

To rename an already existent repository you need direct access to the hosting user. Perform
two actions in that order:

1. Rename the repository accordingly on the server as hosting user.

2. Replace in gitolite.conf all ocurrences of the old name by the new name as admin-
istrative user (don’t forget to commit and push).

Note that this does not work for the administration repository gitolite-admin.

To import an already existent repository into the set of gitolite repositories clone the repository
as bare repository acting as hosting user. Set the file permissions accordingly (at least read/write
permissions for the hosting user, which is usually the case when you clone). Run gitolite
setup as hosting user. Make the appropriate modifications in the gitolite.conf file as
administrative user (don’t forget to commit and push).

6 User’s point of view

6.1 Becoming a user

A potential user of a repository on the server machine needs to send his/her public key to a
repository administrator who will set-up the access rights for this user on the server machine
(see Section 5.4).

Note that the access to the repository on the server machine is given to the person/service
knowing the corresponding private key, hence, the system is at most as secure as the protection
of the private key on the user’s side.

6.2 Available commands

The user does not get a shell access on the server, rather a restricted set of commands is pro-
vided.

command description
ssh hostusr@server info -h retrieving of information of accessible repositories
ssh hostusr@server perms -h handling of permissions
ssh hostusr@server desc -h handling of descriptions

Table 1: User commands (help format)

Normally, a user performs normal git actions:

1 git clone hostusr@server:some-repo
2 ...
3 < work with data >
4 git add ...
5 git commit ...
6 ...

Usage of gitolite on lia server (v1.3)
6 User’s point of view

Page
11 of 12

7 git push
8 ...
9 git pull

10 ...
11 etc.

For more information see the documentation of git and gitolite as referenced in Section 1.4.

6.3 A note on filenames

The repositories on the server are probably accessed by users working on machines with dif-
ferent operating systems (e.g., GNU/linux, Windows, and MacOS) which handle filenames
differently.

To avoid any problems when moving files from one machine to another it is strongly recom-
mended to use filenames that are handled identically on all machines. Therefore, you should
use only names that comply to the following rules:

1. The filename consists only of characters from the following sets [A-Za-z0-9], i.e.,
letters and digits, and as special characters [.-], and nothing more (Note the [] are
meta-symbols and not included!).

2. The hyphen [-] is never used as first character.

3. The dot [.] is never used as last character.

4. There is at most one dot [.] present in the name.

5. Within the same directory there appear never two files that distinguish only in lower-
case/uppercase.

If there is a need to use filenames within the working directory that do not comply to the
rules, these files should be excluded with the help of the corresponding .gitignore file (one
example are for instance editor backup files ending in [∼]).

Symbolic or hard links are not handled consistently on all operating systems either, so it is
recommended to exclude symbolic or hard links whenever the users work on different operating
systems.

6.4 A note on directory structure

Before starting using centralized repositories within a group of developers you should agree
on a consistent philosophy how to organize and name the directories in your working area.
Special case should be taken not to stores intermediate files in the repository; such files should
be excluded by means of the .gitignore files. Note that these files can be placed in any
subdirectory and the effect is accumulative along the path.

6.5 Trouble shooting

6.5.1 Dangling old keys

Whenever you try to access the repository on the server (either as administrator or user) and
you get a message like

Usage of gitolite on lia server (v1.3)
6 User’s point of view

Page
12 of 12

Agent admitted failure to sign using the key.

your ssh-daemon might still use for some reasons an old key entry. Try to remove all (or only
some) keys from the ssh-daemon and add the correct one, i.e.,

1 ssh-add -D
2 ssh-add

The first line removes all keys in use. After the second line, you will be asked for the pass-
phrases of the keys to use.

6.5.2 Dangling old hostnames

If the server hardware is changed, the client will notice the change and is asked to add or modify
the keys. If you trust the new server identity, you should remove from your known hosts file
under .ssh the old server keys and—when connecting–the keys for the new server are added.

The command, with server replaced by the server host name,

1 ssh-keygen -H -F server

lists the line of the known hosts file where the key of the server is located. Remove that line
from the known hosts file. Repeat the process for the IP address (each trusted host has two
lines in the known hosts file, one for the name, one for the IP address).

6.5.3 Copying of hostusr after system update

If you suffer a system crash or simply install new hardware on the server, you might run into
the issue of re-installing the hostusr on the server machine.

Assume that you have created the hostusr on the new system and have copied all old files
from the hostusr into her home directory. Make sure that ownership and groupness are set
correctly for all files. For security reasons and update policy the configuration files (dot-files)
of the shell and the .ssh directory should not be copied, and therefore some more work is
necessary.

As hostusr the following commands (part of Section 5) should be re-executed:

1 hostusr@server: echo "export PATH=$HOME/bin:$PATH" >> .bashrc
2 hostusr@server: source .bashrc
3 hostusr@server: gitolite/install -ln /home/‘whoami‘/bin
4 hostusr@server: gitolite setup -pk director.pub

which will re-establish the softlink in the bin-directory and create new ssh-keys.

	Introduction
	Purpose
	Scope
	Revision history
	Applicable and reference documents
	Document overview

	Overview
	Concept
	Naming and writing conventions
	Machines
	Roles

	Prerequisites
	ssh issues
	Authorization
	Key generation
	Security aspects

	Repository set-up
	Creating hosting user
	Installing gitolite
	Administrating the hosting user
	Adding repository users
	Configuring access rights to repository users
	Adding/deleting repositories
	Some further actions

	User's point of view
	Becoming a user
	Available commands
	A note on filenames
	A note on directory structure
	Trouble shooting
	Dangling old keys
	Dangling old hostnames
	Copying of hostusr after system update

