
Programming style guide

how to write C++ programs

LIA
Universidade de Vigo
Escola Superior de Enxeñarı́a Informática
E–32004 Ourense

http://lia.ei.uvigo.es
mailto:formella@uvigo.es

Contact: Arno Formella

Reference: LIA-DOC-PRG-STYLE
Version: 1.3

Date: 15/03/2013
Pages: 39

http://lia.ei.uvigo.es
mailto:formella@uvigo.es


Programming style guide (v1.3)
Contents

Page
2 of 39

Contents

1 Introduction 4
1.1 Purpose and scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Writing conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Style guide 7
2.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Comments for code and classes . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Comments for variable and constant declarations or definitions . . . . . 8
2.1.3 Comments for parameters . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Special purpose comments (gotchas) . . . . . . . . . . . . . . . . . . . 8

2.2 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Type related names . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1.1 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.3 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.4 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Class methods and functions . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Class attributes and variables . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3.1 Global variables . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3.2 Local variables . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3.3 Argument names . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3.4 Pointer and reference variables . . . . . . . . . . . . . . . . 14
2.2.3.5 Static variables . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 File guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.8 Macro definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.9 C functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.10 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.11 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Block structure and white space . . . . . . . . . . . . . . . . . . . . . 17

2.3.1.1 Placement of braces, parenthesis, and the like . . . . . . . . 17
2.3.1.2 Indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1.3 Blank spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1.4 Blank lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Layout of control structures . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2.1 if–then–else . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2.2 while and do–while . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2.3 for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2.4 switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Programming style guide (v1.3)
Contents

Page
3 of 39

2.3.2.5 Try–catch . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2.6 Conditional expression . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Block layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3.1 Header file layout . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3.2 Class layout . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3.3 Source file layout . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3.4 Method, variable, and parameter layout . . . . . . . . . . . . 23

2.3.4 Splitting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Programming discipline guide 26
3.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Const correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Construction, assignment, and destruction . . . . . . . . . . . . . . . . . . . . 28
3.6 Name coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Class and template design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7.1 Abstract classes, Do–ables . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.2 Liskov’s substitution principle . . . . . . . . . . . . . . . . . . . . . . 30
3.7.3 Open/Closed principle . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 Template definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.10 Types and conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Methods and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.11.1 Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11.2 Access methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11.3 Get and set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11.4 Friend declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11.5 Verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.12 Preprocessor usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12.1 include directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.12.2 define directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.13 Variables and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.14 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.15 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.16 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.17 Overloading and overwriting . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.18 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.19 Default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.20 Test code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.21 Exception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.22 Version control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Documenting guide 39
4.1 Documentation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Specific requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Programming style guide (v1.3)
1 Introduction

Page
4 of 39

1 Introduction

This document is about writing nice C++ programs.

It is not about software design in general nor about software engineering in C++ in particular,
i.e., issues such as “how to design a class or class hierarchy” or “how to implement a certain
algorithm, pattern, flow, or whatsoever” are beyond its scope. You should be already quite
familiar with most of the features of C++. This document is not a C++ tutorial, nor an introduc-
tion to the programming language C++, neither a help on compiling C++ programs on some
platform using some compiler.

Why should you read on? Because a common style really helps to achieve your programming
goals, especially when you work in a multi–user, multi–platform environment.

Certainly, many of the recommendations gathered in this document are different from or even
contrary to other style guides, especially the one you may already may use. (There is a short
overview to other style guides in the reference section.) Most of the statements presented here
are based on reasons, excluding explicitly the following one: being compatible to legacy code
and programming habits. If you need such a compatibility in a specific case: document it and
use the style you are required to use. But avoid sticking to traditions just because they are
traditions, especially in new projects; rather draw reasonable decisions.

Writing programs, in any programming language, is not an easy task. Besides implementing all
requirements in a correct, efficient and robust manner, there are more aspects to be addressed:

• The code should be reusable by yourself and others, either in an API–like way or directly
through the copy&modify approach.

• The code should be portable to other environments including where people speak a different
language.

• The code should be written in a way that reduces the probability of errors.

A common programming style among people working as a developing team on the same
project, at least, helps to achieve such goals. Further positive aspects of a common program-
ming style include:

• New people can start programming quickly.
• People new to C++ are spared the need to develop their own style.
• People new to C++ are spared making the same mistakes over and over again.
• The number of mistakes and misinterpretations is reduced in a consistent environment.
• All programmers adhering to more or less the same style can read any code easily and

figure out what is going on without additional effort, especially when they are familiar
with the underlying implicitly provided information.

• With consistently formatted documents other tools work much easier and their output is
again much more readable for instance, linewise comparison with diff.

Clearly, there are some negative aspects of a common programming style that should be men-
tioned:

• You have to learn it.
• You might be obliged to use it.
• There are always exceptions and errors.
• Automatic code generation tools often don’t produce code that adheres to any useful pro-

gramming style.
• Your current editor or its default settings do not support directly the recommendations.



Programming style guide (v1.3)
1 Introduction

Page
5 of 39

However, most of the arguments against a certain style are subjective and reflect personal opin-
ions, such as:

• I have already my nice personal style and don’t want to change.
• I don’t like the proposed style.

If you go–on reading you should put yourself in the role of someone who never has written a
medium or large size C++ program, but who is interested in writing such a program in a clear
and commonly acceptable style.

Modern integrated development environments (IDEs) can improve the readability of code by
access visibility, color coding, automatic formatting and so on. However, a programmer should
never rely on such features only. Source code should always be considered independent from
the IDE where it is or was developed. It should be written in a way that maximizes its readability
and that allows to edit and modify the code on any other IDE.

This document distinguishes between style guide and programming discipline. The style guide
just states how certain things should be written. The programming discipline gives some advice
which constructs of the programming language should be used preferably in a certain context
and how additional, implicit information can be passed to a programmer reading the code.

1.1 Purpose and scope

This style guide is intended as the base for all programming using the C++ programming lan-
guage in the LIA research group. Although written specifically for C++, most of its content is
easily ported to other programming languages such as C, Java, C#, Python or Perl.

All researchers of LIA, students realizing their final projects within the research group, and
everyone else who likes to, can use this style guide as a base for writing C++ programs.

Comments on the document are very welcome.

1.2 Revision history
Version 1.3: A revised version with small changes and spelling corrections. Some issues of

C++11 introduced.
Version 1.2: A revised version being more complete and consistent, written in the end of 2009

and beginning of 2010.
Version 1.1: Adapting the layout to the LIA-document style.
Version 1.0: This is the initial document written in July and August of 2009.

1.3 References

The document was developed with a long term programming experience in C++. The following
references have been a great help:

• Todd Hoff’s C++ coding standard located at http://www.possibility.com/Cpp/
CppCodingStandard.html in its version from March 01, 2008.

• C++ Programming Style Guidelines. Version 4.7, October 2008. Geotechnical Software
Services Copyright c© 1996–2008. This document is available at http://geosoft.
no/development/cppstyle.html.

http://www.possibility.com/Cpp/CppCodingStandard.html
http://www.possibility.com/Cpp/CppCodingStandard.html
http://geosoft.no/development/cppstyle.html
http://geosoft.no/development/cppstyle.html


Programming style guide (v1.3)
1 Introduction

Page
6 of 39

• The C++ rules and recommendations by Mats Henricson and Erik Nyquist, Ellemtel Tele-
communication Systems Laboratories, Box 1505, 125 25 Älvsjö, Sweden, Copyright c©
1990–1992. http://www.doc.ic.ac.uk/lab/cplus/c++.rules

• Google C++ Style Guide, Revision 3.133 by Benjy Weinberger, Craig Silverstein, Gregory
Eitzmann, Mark Mentovai and Tashana Landray, 2009.

1.4 Writing conventions

The style guide follows the strategy of first stating some recommendations, then (maybe not
in all cases) giving some positive examples, and afterward providing some arguments why the
recommendations are given that way. Possibly, additional notes provide even more information
about the issue treated in the section.

• TheRecommendations recommendations summarize the main aspects.
• A recommendation with the terms “must” or “must not” states a requirement that must be

followed.
• A recommendation with the terms “should” or “should not” states a strong recommendation

that should be followed, but that can be moderated or interpreted according to some specific
needs or circumstances.

• A recommendation with the terms “can” or “cannot” states a general guideline that can be
followed additionally, if you like.

• The recommendations are roughly ordered from “must”– over “should”– to “can”–recom-
mendations.

• You must provide either a new or an alternative reason before you change a recommenda-
tion.� �

// The code sections are given as positive examples, only.
// To highlight the examples, they are surrounded by a rounded box.� �
• TheReasons reasons summarize some insight why a specific recommendation has been stated.
• The main arguments for a common style can be summarized with: simple, uniform, tool

adequate, editor adequate, human readable, pretty printable, easy documentable.

• IfNotes there are notes, they usually describe in some detail specific cases, exceptions, or give
other worthwhile comments.

• A note may recall a specific issue of the language standard a novice programmer might not
be aware of.

http://www.doc.ic.ac.uk/lab/cplus/c++.rules


Programming style guide (v1.3)
2 Style guide

Page
7 of 39

2 Style guide

As already stated in the introduction, the style guide concentrates on how different elements of
the programming language should be written in a program file.

• YouRecommendations must not violate the recommendations as long as you do not have any reason to do so.
• You should state a reason whenever you violate the recommendations.
• You can change the recommendation whenever you have a clear reason to do so.

2.1 Comments
A comment should be useful, at least for two people: the writer and the reader.

As you know, a comment can appear at all places in a C++ program where a whitespace is
accepted as well, but where should you place it?

• ARecommendations comment must precede the item being commented, with only one exception: a comment
continuing in the very same line as the item being commented (so called in–line comments).

• Comments on the same line must not extend over more than that line.
• You must leave one blank after the //–comment indicator or the comment introduction of

the documentation tool, e.g., after the ///–comment.
• You must use the additional features of your documentation tool (e.g., Doxygen).
• You must not use a /*..*/–comment which separates the code within a line.
• You should place the comments as close as possible to the item being commented.
• You should give preference to the //–comment on each line rather than to the /*..*/–

comment.
• You should use correct sentences including correct punctuation in your comments.
• Abbreviated comments should be used only in in–line comments.
• You should not use relative references in your comment, such as “the following class” or

“the next group of methods”.

2.1.1 Comments for code and classes
• YouRecommendations must indent the comment either at the same level or one level deeper than the subse-

quent block structure of the item being commented, whatever you find more readable in the
corresponding situation.

• You must not use a blank line between the comment and the block being commented, rather
use a blank line before the comment, if necessary.� �

/// class description
class SomeClass {
...
/// This constructor uses a somewhat rare argument that ...

SomeClass(const Rare& argument);
};

// Explain the purpose of the while loop.
while(SomeCondition()) {
// Describe the loop invariant.
some code;
...

}� �



Programming style guide (v1.3)
2 Style guide

Page
8 of 39

2.1.2 Comments for variable and constant declarations or definitions
• YouRecommendations must indent the comment either at the same level or one level deeper than the subse-

quent block structure of the item being commented, whatever you find more readable in the
corresponding situation; or continue with the comment on the same line.

• You must use a preceding comment whenever a comment following a declaration or defi-
nition does not fit into the line.� �

unsigned int start(size/2); // start at the center of the array

// The magic constant is merely used for irrational purposes.
const unsigned int magic constant(42);� �

2.1.3 Comments for parameters
• YouRecommendations must indent the comment either at the same level or one level deeper than the subse-

quent block structure of the item being commented, whatever you find more readable in the
corresponding situation; or continue with the comment on the same line.

• You must use a comment with forward reference, e.g., ///<, whenever you decide to place
the comment after the parameter.

• You should not continue a comment following a declaration or definition in the subsequent
line, rather use a preceding comment.� �

void DoSomeThing(
const int iteration, ///< current index of iteration
SomeThing& some thing ///< the modified thing

) {
...

}� �
2.1.4 Special purpose comments (gotchas)

The word “gotcha” comes from the relaxed pronunciation of “I got you” or “I’ve got you”
usually referring to an unexpected capture or discovery.

In programming, a “gotcha” is a feature of a system, a program, or a programming language
that works in the way it is documented but is counter–intuitive and almost invites mistakes,
because it is both easy to invoke and unexpected and/or unreasonable in its outcome.

• YouRecommendations must place the gotcha keyword as the first symbol in the comment.
• You must write the gotcha keyword all uppercase and with surrounding colons.
• You should use marks or commands of the documentation tool to document the information

(e.g. with Doxygen use todo for to–do information).
• The first line should be a self–containing, meaningful summary.
• The author and the date of the remark should be part of the comment.
• More information can be added in subsequent comment lines.

Here are examples of some commonly used “gotchas”:

• :BUG: [bugID] describeExample
Means that there is a known bug here, optionally give a bug ID, explain the bug and possibly
give a workaround.



Programming style guide (v1.3)
2 Style guide

Page
9 of 39

• :COMPILER: state
Sometimes you need to work around a compiler problem. Document it here. The problem
may go away eventually.

• :KLUDGE: explain
When you have done something ugly, say so, and explain how you would do it differently
next time if you had more time.

• :TODO: list
Means that there is more to do here, don’t forget.

• :TRICKY: explain
Tells somebody that the following code is very tricky, so don’t go changing it without
thinking.

• :WARNING: warn
Beware of something.

• Often,Reasons gotchas stick around longer than they should. So make sure that even in the far
future another programmer understands what is said.

• Embedding author and date information allows other programmers to draw the necessary
decisions.

• Embedding author information indicates who to ask in case of doubts.

Note that documentation tools usually provide methods to include these special comments into
the automatically generated documentation. As an example Doxygenprovides the bug, note,
todo, and warning comments.

2.2 Names
One good name tells you more than a thousand comments.

Names are, besides the underlying algorithms and design, the heart of programming. A name
should be the result of a sufficiently long thought process about the context the name will live
in. A programmer who tries to build a system that is understandable as a whole would create
a name that “fits” with the system or even beyond the system. If the name is appropriate,
everything fits together naturally, relationships become clear, meaning becomes derivable, and
reasoning from common human expectations works as expected.

2.2.1 Type related names

2.2.1.1 Namespaces

• YouRecommendations must use all lowercase letters for a namespace name.
• You must not use the underscore as word separator.
• You must use a namespace alias if you need to work with a foreign library that does not

comply with the above recommendations.
• You should use short namespace identifiers.
• You can use short abbreviations for namespaces.� �
namespace lia {
...
}

lia::Vector ...



Programming style guide (v1.3)
2 Style guide

Page
10 of 39

namespace some WEIRED company NAMEspace {
...

}

namespace swc = some WEIRED company NAMEspace;� �
2.2.1.2 Classes

Name a class after what it is. If you can’t think of a name for the objects you are about to create,
you probably have not thought through the design well enough.

• YouRecommendations must use an uppercase letter for the first character.
• You must use uppercase letters as word separators, lowercase letters for the rest.
• You must not use underscores.
• You should use nouns (or verbs or adjectives used as nouns) as class names.
• You should not use compound names of more than three words.
• You should not bring the name of the class a class derives from into the derived class’s

name. But:
• You can use suffixes which are helpful, e.g., if your system uses agents (class Agent) then

naming something DownloadAgent conveys real information.� �
class Vector {
...

};

class ParticleStore {
...

};� �
• ANotes class should stand on its own. If you feel you need to use the same name twice, it is time

to think of introducing namespaces.
• Prefixes are sometimes helpful, e.g., if you want to make clear that certain classes belong

to the same group of objects, but probably namespaces are the better option.

2.2.1.3 Templates

Name a template after what it stands for. Usually a template is an abstract entity, such as a
container, collection, action, or concept. If you can’t think of a name for the template you are
about to implement, you probably have not thought through the design well enough.

• TemplateRecommendations names must follow the class naming conventions.
• Template names must terminate in T.
• You should avoid an uppercase letter in front of the terminating T.
• Template parameters should be single uppercase letters.
• You should use typename instead of class in the template parameter section.� �
template <typename T>
BoxT {
T t;
...

}� �



Programming style guide (v1.3)
2 Style guide

Page
11 of 39

2.2.1.4 Types

Name a type after what it is. Often, a type is an abbreviation for a complex class of template
instantiation. If you can’t think of a name for the type you are about to define, you probably
have not thought through the design well enough.

• typedefsRecommendations should follow the class naming conventions.
• If the typedef defines sized data, the number of bits or bytes should be given in the type

name.� �
typedef unsigned int Uint32;
typedef unsigned char Block512[512];

BoxT<double> box;

typedef BoxT<double> BoxD;� �
2.2.2 Class methods and functions

Name a method or function after what it does. Usually methods and functions perform actions.
So the name should make clear what that action does. If you can’t think of a name for the
functions you are about to implement, you probably have not thought through the design well
enough.

• YouRecommendations must use an uppercase letter for the first character.
• You must use uppercase letters as word separators, lowercase letters for the rest.
• You should use a verb as first word of the name.
• You should use the same name (i.e., use overloading) whenever the methods indeed realize

sufficiently similar tasks.
• You should use common standards. Document to which standard you adhere, if a class is

designed in the field of this standard.
• You should try to use readable names.
• You should not use compound names of more than three words.
• You should not use abbreviations, spell things out, especially you should not abbreviate

words by simply omitting its tail.� �
bool CheckForErrors(void);
void DumpDataToFile(const Data& data);� �
• WithRecommendations the first recommendation and the first one for class attributes (see next section), an

access method to a class attribute is just distinguished from the attribute by the uppercase
letter, which underlines the strong relationship between the attribute and the method.

2.2.3 Class attributes and variables
• YouRecommendations must use a lowercase letter for the first character.
• You must not use an underscore for the first character.
• You must use uppercase letters as word separator for class attributes.
• You must not use additional prefixes for class attributes.
• You must use the underscore as word separators for local variables.



Programming style guide (v1.3)
2 Style guide

Page
12 of 39

• You must use math standards, i.e., write angles with words for Greek letters, write coeffi-
cients with letters from the beginning of the alphabet, write variables with letters from the
end of the alphabet.

• You should use single letter variable names for standard type variables in a consistent way,
possibly with numerical suffix (e.g., x0,x1), some examples:

– i,j,k: integer loop variables
– n,m: integer limit variables
– a,b,c: floating point coefficients
– p,q: points
– r,s,t: parameter values
– v,w: values
– x,y,z: coordinates

• You should use the general rule: the longer the name the larger the lifetime.
• You should use for deeper nested variables letters from later in alphabet. There is one

exception: if you use a variable for a dimension, e.g., i for rows and j for columns, you
should rather stick to this naming convention, rather than to the nesting rule.

• You should use commonly used addressing modes, e.g., i for rows and j for columns.
• You should not bring the type of the variable into the variable’s name, but

– Generic variables should have the same name as their type.
– Non–generic variables should have the name of their type added as suffix or as a prefix

(the former especially when the variable represents a GUI component). Such variables
usually play a role, its semantics is easier captured if the type is seen at the same time.

• You should use the plural form on names representing a collection of objects.
• You should use the prefix n for variables representing a number of objects.
• You should use the prefix i, respectively j and k, for variables representing elements in a

loop (named iterators), e.g., it, jt, and kt for iterators in nested loops.
• You should use a suffix to express a certain variant, e.g., the unit used for the value repre-

sented by this variable.
• You should not use prefixes to indicate pointer or reference type of a variable, unless you

need to point out something.
• You should not use compound names of more than three words.
• You should not use abbreviations, spell things out.� �
Vector vector;
ParticleStore particleStore;
double phi;

void HighlightAll(Topic∗ topic)
void Open(Database& database)

Database backupDatabase;

Point startingPoint;
Point center point;

Dialog preferenceDialog;
Scrollbar buttomScrollbar;

std::vector<Point> points;
unsigned int nPoints;

for(vector<Point>::iterator it(list.begin());
it!=list.end();
++it

) {
Point iPoint(∗it);
...

}



Programming style guide (v1.3)
2 Style guide

Page
13 of 39

Segment∗ segment;

Segment segment;
// if you use at the same time segment and p segment.
Segment∗ p segment;� �
• RepeatingReasons the same name reduces complexity by reducing the number of terms and names

used.
• The type can be deduced often by the name of the variable.
• Using the commonly used ways of how things are named increases the readability and

understandability of the code.
• You can always prepend the classname as classifier if you need to make a distinction.

2.2.3.1 Global variables

• GlobalRecommendations variables must follow the naming convention for member variables of classes.
• Global variables must always be referred to using the ::–operator.
• Global variables should not have a specific prefix.

• VariablesReasons may change from global to local/class–local, hence a prefix might become obso-
lete.

• You can think of global variables as static variables of your “application class”.

2.2.3.2 Local variables

• YouRecommendations should write local variables with all lowercase letters and the underscore as word
separator.� �

int NameOneTwo::HandleError(
const int errorNumber

) {
const int error(OsErr());
const Time time of error;
ErrorProcessor error processor;
Time∗ p out of time=0;

}� �
2.2.3.3 Argument names

• YouRecommendations must write a variable name in the declaration of the formal parameters of a function or
method.

• You must write void in the parameter list, whenever a function or method does not have
parameters, with the only exceptions of the default constructor and destructor.

• Generic variables should have the same name as their type.
• You can use for the parameters of a constructor the same names as the member variables

appending an underscore in the definition (but not in the declaration).



Programming style guide (v1.3)
2 Style guide

Page
14 of 39

� �
class SomeClass {
unsigned int maxCount;
...
SomeClass() : maxCount(0) { }
˜SomeClass() { }
SomeClass(
const unsigned int maxCount

) :
maxCount(maxCount )

{ }
unsigned int MaxCount(void) const { return maxCount; }
...
void LinkDatabase(Database∗ database);

};� �
2.2.3.4 Pointer and reference variables

• YouRecommendations must write the pointer symbol and reference symbol next to the type, not next to the
variable.

• Pointer and reference variables can have a type indicating prefix, e.g., p for pointer and r
for reference.� �

Particle∗ pP=0;
Particle& rQ(someParticle);� �

2.2.3.5 Static variables

• StaticRecommendations variables should not have an indicating prefix.

• ThereReasons might be a shift during development from static to non–static and vice versa, hence,
maintaining consistent prefixing becomes difficult.

• The distinction should come from the name, i.e., it should be clear that the variable is a
class component and not an instance component.

2.2.4 Enumerations
• YouRecommendations must follow the class name conventions for the name of the enumeration.
• You must use all uppercase letters with the underscore as word separator for the enumera-

tion members.
• You should consider namespaces to group enumeration values that are used as globally

defined constants.
• You should not use a plural noun as name for an enumeration.
• You can use common prefixes to differentiate the names in an enumeration type.� �
enum Color {

COLOR RED,
COLOR GREEN,
COLOR BLUE

};� �



Programming style guide (v1.3)
2 Style guide

Page
15 of 39

2.2.5 Constants
• YouRecommendations must use all uppercase letter for constants.
• You must use the underscore as word separator.
• You must write floating point constants always with decimal point and at least one decimal,

or with exponent.
• You must write floating point constants always with a digit before the decimal point.
• You should not use compound names of more than three words.� �
const int SOME CONSTANT;
const unsigned int MAX ITERATIONS(100);

double total(0.0);
const double SPEED OF LIGHT(3e8);� �

2.2.6 Labels
• BesidesRecommendations labels placed within switch–statements, all labels must have the prefix Label.
• The colon must follow immediately after the label.
• The label must be placed starting at the very left end of a line, independently whether the

label is nested within some block structure.
• Labels should indicate in their names what is the reason for being there.� �
...
LabelError:
...� �
• LabelsReasons should be very easy to find in the code, because they usually are reached through a

abrupt change in program flow.

2.2.7 File guards

A file guard in a header file is a mechanism that prevents multiple inclusions of the same file.

• YouRecommendations must use the exact filename as part of the header file guard, where the dot is replaced
by an underscore.

• You must include a comment explaining why you do not use a file guard in a header file,
i.e., the specific file might be included more than once.

• You can prepend a significant prefix indicating the company, project, or namespace.� �
#ifndef Vector h
#define Vector h
...
#endif

#ifndef mathlib Vector h
#define mathlib Vector h
...
#endif� �



Programming style guide (v1.3)
2 Style guide

Page
16 of 39

2.2.8 Macro definitions

The use of preprocessor macros can introduce unwanted side effects, so special care must be
taken of.

• YouRecommendations must use all uppercase letters for macro definitions.
• You must use the underscore as word separator.
• You should undefine a macro definition when you do not need it any more.
• You should avoid macro definition, there are better possibilities available in C++.
• You should consider the do-while construct for the macro definition.� �
#define FOO(what you want) do { what you want } while(0)� �
• YouReasons can use a complex expression and sequences of statements as argument of the macro.
• You don’t run into problems with empty statements.
• You don’t run into problems with a semicolon placed after the usage of the macro, for

instance as in FOO(WriteSomething);

2.2.9 C functions
• YouRecommendations must precede a declaration of a C–function with extern "C" or gather them in a

block with extern "C"{ }.
• If the declaration is used both in a C and in a C++ file, you must guard the declaration with

an appropriate preprocessor directive.
• You should follow for naming C–functions the same recommendations as for C++ func-

tions and methods.� �
extern "C" void ALonelyCFunction(void);

#if defined( cplusplus}
extern "C" {
#endif

void SomeCFunction(void);
int AnotherOne(const int n);

#if defined( cplusplus}
}
#endif� �
• NoteNotes that the cplusplus macro is defined by all reasonable C++ compilers.

2.2.10 Abbreviations
• YouRecommendations must not use all uppercase abbreviations, instead you should use an initial uppercase

letter followed by all lowercase letters or all lowercase letters.
• You should avoid abbreviations, use only really commonly established abbreviations.� �
class XmlReader {
...

};

int xml header offset;� �



Programming style guide (v1.3)
2 Style guide

Page
17 of 39

• IfReasons you don’t write uppercase abbreviations, the building of the names follows the general
rule for building names.

• If two or more abbreviations are connected, it is difficult to separate them in their individual
parts, as in STDHTMLInterface.

• Different programmers might abbreviate differently which adds complexity to the project.

2.2.11 Files
• YouRecommendations must name header files with the extension .h.
• You must name source files with the extension .cpp.
• You must name the files implementing a class or template exactly as the class name or the

template name.
• You should implement at most one class in one file.
• You should name implementation files for inline functions and templates with the extension
.hpp.

2.3 Formatting
The formatting style is the programmer’s corporate identity.

• CodeRecommendations lines must not exceed 80 characters.
• You must split lines larger the 80 characters in readable parts.
• You must use indentation, blank lines, and white spaces to enhance the readability of the

program.

2.3.1 Block structure and white space

2.3.1.1 Placement of braces, parenthesis, and the like

• YouRecommendations must place an opening brace in the same line as its dominating control structure.
• You must place a closing brace either as a single symbol on a line, possibly followed by a

semicolon or a comment, or in the same line as its corresponding open brace.
• You should place one blank between a pair of braces to indicate an empty block.
• You should place all non–braces parenthesis pairs such as [], (), <> either on the same

line or you should follow the recommendations for braces.
• You should use blanks sparsely close to parenthesis of any kind.� �
class XmlReader {
...
XmlReader(void) { }

};

switch(state) {
case INITIAL: {
...
break;

}
case
...

default:
throw Exception(...);

} // end of state machine switch� �



Programming style guide (v1.3)
2 Style guide

Page
18 of 39

• TheReasons more important brace is the closing brace, because it indicates where a block ends. The
beginning of a block can be guessed in almost all case by analyzing the identifier/keyword
in front of the brace.

• Placing opening braces alone in their own lines just adds almost totally blank lines which
disturb the block structure, because it is difficult to distinguish between blank lines sepa-
rating blocks and the line containing just the brace.

• Braces, parenthesis and the like serve two purposes: they group certain entities as one
element (e.g. a parameter list, a block of instruction, a first–to–evaluate–expression, etc.)
and they allow for a nested structure of blocks (e.g., nested loops, nested classes, nested
control structures etc.).

• The purpose of such parenthesis always should be the separation of entities without de-
stroying the perception of the groups.

2.3.1.2 Indentation

• YouRecommendations must not use tabulators to indent.
• You must not indent a namespace content, use blank lines instead to highlight the start and

end of a namespace.
• You must not indent a preprocessor directive, they always start at the first column.
• You must not indent public, protected and private keywords further than the class

keyword.
• You must not indent labels.
• You should indent with two (2) spaces (increasing on all levels).
• You should not try to maintain vertically aligned blocks.
• You can indent with three or four spaces.

• HugeReasons indentation levels leave simply no room to place interesting information in that line.
• Wrapping of lines in the visualization tool, i.e., continuing the line at the beginning of the

next line, just renders the indentation intent ridiculous.
• Even though with big monitors we can stretch windows wide, printers or printing software

usually only print roughly 80 characters wide.
• The wider the window the fewer windows we can have on a screen. More windows is better

than wider windows.
• diff output is viewed and printed correctly on all terminals and printers.
• It is difficult and a lot of typing work to maintain vertically arranged blocks when changes

are necessary or things get copy&pasted.
• Indenting by itself does not enhance the logical structure of the code, it just adds white

space on the left.
• Helper tools, like diff, or version control systems, like git, are line-oriented. Hence, with

shorter lines clearly dedicated to one purpose, tracking of the on-going development is
much easier and difference files are much smaller.

• Automatic documentation tools, like Doxygen, might get confused with the indentation
level if the tab–size does not coincide or whenever indentation with blanks and tabs are
mixed.

2.3.1.3 Blank spaces

• YouRecommendations must not use trailing whitespaces.
• You must not use tabulators as whitespaces.
• You must not use pagebreaks as whitespaces.



Programming style guide (v1.3)
2 Style guide

Page
19 of 39

• You must not use blanks between a function name and the opening parenthesis.
• You must not use blanks between a keyword of a control structure and the opening paren-

thesis of its condition.
• You should use whitespace sparsely, its main purpose is to group in readable units (words).
• You can put blanks after the opening parenthesis and before the closing parenthesis of a

condition.
• You can put blanks around operators.
• You can put blanks after a coma.

• TooReasons much separation in a text between letters, words, sentences, paragraphs etc. does not
enhance but disturbs a fluent reading.

• Modern editors and print software highlight keywords anyway, so separation is not needed.
• Blanks and blank lines disturb the visual block structure.
• Tabulators and pagebreaks cause problems for editors, printers, terminal emulators and/or

debuggers when used in a multi–programmer, multi–platform environment.

• NoteNotes that the C/C++ standard allows the following six digraph symbols <:, :>, <%, %>, %:,
%:%: which behave exactly like the six tokens [, ], {, }, #, ##, hence, you have to place in
certain expressions a blank (or another separator).� �
a=b% ::global; // here the blank is needed, avoids %: digraph
if(a< ::global) // here the blank is needed, avoids <: digraph� �

2.3.1.4 Blank lines

• ARecommendations blank line must not contain any character (neither blank spaces, nor comment symbols).
• You should add a blank line to separate logical parts of the code.
• You should use a blank line both before and after a namespace opening and closing.
• You can use up to three blank lines to separate definitions of functions/methods.

2.3.2 Layout of control structures
• YouRecommendations should place the opening brace in the same line as the corresponding keyword, and the

closing brace right below, i.e., at the same indentation as the keyword.
• You should use the same convention for the parenthesis of long conditions.
• You can use end–markers for closing braces, if the corresponding opening brace is difficult

to find.

• YouReasons spare a line, hence you see more code at once.
• There is a clear difference what a function, class, or indented block is. For long conditions

you would end up with two almost blank lines.

2.3.2.1 if–then–else

• YouRecommendations must avoid assignment statements in conditions.
• You must use either braces in both the if and the else part or in none of them.
• You must not use a blank after the keyword, rather use blanks in front and after the condi-

tion.



Programming style guide (v1.3)
2 Style guide

Page
20 of 39

• You should avoid evaluation statements in conditionals.
• You should put the condition on a separate line, rather than breaking it in two parts.� �
if(condition) {
statements;

}

if(condition) {
statements;

}
else {
statements;

}

if(
condition1 &&
condition2

) {
statements;

}

if( condition ) {
statements;

}
else if( condition ) {
statements;

}
else {
statements;

}

const File∗ fileHandle=open(fileName,"w");
if(!fileHandle) {
...

}� �
• ForReasons debugging purposes, when writing on a single line, it is not apparent whether the test

is really true or not. Remember that setting breakpoints and tracing in most debuggers is
still line oriented.

• The parenthesis around a condition are—speaking somewhat imprecisely—redundant, you
should make clear what parenthesis are used to group the logical parts of a condition and
what parenthesis are just part of the syntax of the C++ language.

• Conditionals with executable statements are just very difficult to read.

2.3.2.2 while and do–while

• YouRecommendations must follow the sames rules as given for the if.
• You must write the while in a do–loop in the same line as the closing brace of the block.� �
while(condition) {
statements;

}

while(
condition1 &&
condition2



Programming style guide (v1.3)
2 Style guide

Page
21 of 39

) {
statements;

}

do {
statements;

} while(condition);

do {
statements;

} while(
condition1 &&
condition2

);� �
2.3.2.3 for

• YouRecommendations must write the loop controlling code either in one line or at least in three lines, one for
each part.� �

for(initialization; condition; update) {
statements;

}

for(
initialization;
condition;
update

) {
statements;

}� �
2.3.2.4 switch

• YouRecommendations must mark a fall through, which is done on purpose, with an explanatory comment.
• You must mark a missing default–case, which is done on purpose, with an explanatory

comment.� �
switch(selection) {
case ABC:
statements;
// fall through is on purpose

case DEF: {
declarations;
statements;
break;

}
case XYZ:
statements;
break;

default:
statements;
break;

}� �



Programming style guide (v1.3)
2 Style guide

Page
22 of 39

2.3.2.5 Try–catch

The try–catch–block follows the spirit already given for the loop structures.� �
try {
statements;

}
catch(const Exception& exception) {
statements;

}� �
2.3.2.6 Conditional expression

• YouRecommendations must write the expression either in one line or use at least three lines, one for each part.� �
(condition) ? funct1() : func2();

or

(condition)
? long statement
: another long statement;� �

2.3.3 Block layout

2.3.3.1 Header file layout

• YouRecommendations must use an include protector or comment why you don’t use one.
• You must group include statements.
• You must sort include statements alphabetically within a group.
• You must not use absolute file names in include statements.
• You must include all files at the top of a file.
• You should order the include files putting first the local includes, then the project/library

includes, that the system includes.
• You should use as general order of the parts in a typical header file: general comments,

include files, forward declarations, local defines, classes, inline operations (possibly as
include of an external file), external references.

2.3.3.2 Class layout

• TheRecommendations general layout of a class should follow the scheme:
friends: first all friend classes then all friend methods; recall that friend methods are im-

plicitly public.
statics: first all static attributes then all static methods.
classes: all nested classes.
members: all member attributes.
methods: all methods organized as follows:



Programming style guide (v1.3)
2 Style guide

Page
23 of 39

lifecycle: construction and destruction
operators: overloaded operators
access: access methods and operators
inquiry: methods that query the state of the object
operations: methods that operate on/with the object

• You must order the entries in a reasonable part of a class: first private, then protected,
then public.

• You must use the virtual keyword whenever you overwrite a virtual method.
• You should group the entries in each part with common sense from a programmer’s point

of view.
• Within each group, you should sort the entries alphabetically.
• You should be aware of data alignment issues on the target architecture.

• TheReasons order in which items appear in a file is relevant for a programmer which works directly
with the given code.

• You end up scrolling up and down if you want to learn in detail what the class does, because
public interfaces usually use private parts.

• The automatic documentation tools rearrange everything anyway, so a user of the class
interested only in the public interface has a standard way of looking at the class, which
does not depend much of the real order.

• If things are sorted, they are easier to find.
• Memory aligned data might be faster to access on a given processor.� �
class SomeClass : public BaseClass {
...

};

class SomeClass :
public AClass,
public BClass,
public CClass

{
...

};� �
2.3.3.3 Source file layout

• YouRecommendations must include all files at the top of a file.
• You should group the include files reasonably.
• Within a group, you should sort the include files according to their names.
• You should include first the specific local files, then other library files, and finally system

header files.
• You should maintain the same order while implementing the methods as you used in the

header file.

2.3.3.4 Method, variable, and parameter layout

• YouRecommendations must declare/define each variable on one line.
• You must write the reference and pointer symbols next to the type rather than next to the

name.



Programming style guide (v1.3)
2 Style guide

Page
24 of 39

• You must use const where ever possible.
• You should write the type and the name of the variable or method/function on the same

line, both in declarations and in definitions.
• You should not pass simple types by reference, if possible.
• You should prepend a /* static */–comment right before the definition of a static

method.� �
double∗ d;
int& j(i);

/∗ static ∗/
void MyClass::StaticMethod(
) {
}

int MyClass::AnyMethod(
const int arg1,
const int arg2,
const int arg3,
const int arg4

) const {
}

int MyClass::AnyMethod(
const double arg1,
const double arg2

);

int MyClass::AnyMethod(
const SomeType& in,
OtherType& out

);� �
• EditingReasons is still line oriented. Moving entire lines is much easier and less error prone than

copying words.
• With common file comparing tools (such as diff) it is easy to find out when variables or

parameters differ.
• You avoid pointer declaration errors (int* i,j, here, only i is a pointer, j is not).
• The pointer–ness or reference–ness of a variable is a property of the type rather than the

name.
• It is easy to add specific comments to each entity.
• The return type of a method or function is related to the function in the same way as it is

the case for a simple variable.
• Human reading is line oriented, so things being in the same line are usually perceived as

closer related than things on separate lines.

2.3.4 Splitting lines
• LinesRecommendations must not exceed 80 characters.
• You must split lines in readable and logically coherent parts.
• You must indent and align the parts to enhance readability.� �
RunMethod(par1,par2,par3,par4);
RunMethod(
par1,par2,par3,par4

);



Programming style guide (v1.3)
2 Style guide

Page
25 of 39

RunMethod(
par1,par2,
par3,par4

);
RunMethod(
par1,
par2,
par3,
par4

);

if(
conditionOne &&
conditionTwo

) {
statements;

}
else if(
conditionThree | |
conditionFour

) {
statements;

}
else {
statements;

}� �
• WritingReasons the parameters each one at its own line, allows to add comments for each parameter

easily.
• Writing the conditions each one on its own line, allows to add comments for each condition

easily.
• Helper tools, like diff, or version control systems, like git, are line-oriented. Hence, with

shorter lines clearly dedicated to one purpose, tracking of the on-going development is
much easier and difference files are much smaller.

• External references to specific lines of the code are easier to use, because there is only one
significant entity on that line.



Programming style guide (v1.3)
3 Programming discipline guide

Page
26 of 39

3 Programming discipline guide

As already stated in the introduction, the programming discipline concentrates on how different
elements of the programming language should be used (or should not be used).

• YouRecommendations should write your programs completely in English.
• You should be aware that a good programming discipline is even more important than a

nice programming style.

• EnglishReasons is the preferred language for international development.
• Almost all libraries are written in English.

3.1 Comments
Comment the necessary, not the obvious.

• YouRecommendations must use automatic documentation tools, such as Doxygen.
• You should try to write your program that the code is self-explaining, especially by using

names that through their context based semantics tell the right story.
• You should comment the borderline and exceptional cases.
• You should comment the invariants of the algorithm.
• You should comment any grouping and general assumptions.
• You should comment preconditions and postconditions.
• You should comment side effects.
• You should comment why you don’t initialize a variable.
• You should comment early, best when you write the code. No one goes back and documents

old code.
• You should take into account that comments in header files are for users of the class and

comments in source files are for implementers of the class or of derived classes.
• You should use additional blocks to highlight comments for such a block (and possibly

confine the lifetime of the variables).
• You should comment type conversions and give arguments why you don’t expect loss of

precision or why you don’t care of such a loss.
• You should make sure that comments are easily added/modified/deleted whenever the en-

tity is added/modified/deleted.
• You should stick to the notations of the source documents for your coding effort (even if

this up to a certain degree vulnerates the style conventions given in this document).
• You should avoid using code to explain code.
• You should comment tricky implementations especially explaining non–obvious decisions

being drawn for performance reasons.
• You should give references to additional information and avoid copying information that

appears better in its original format. Note that documentation tools allow to include ele-
ments from complex text processors.

• You should give a comment on copyright issues and on code implicitly or explicitly used
in the file with fulfilling their own copyright requirements.

3.2 Const correctness
The compiler can do more than you might think.

• YouRecommendations must use const where ever you can.



Programming style guide (v1.3)
3 Programming discipline guide

Page
27 of 39

• You must declare variables that are not changed after initialization as const.
• You must declare methods that do not change the object as const.
• You must declare parameters that are not changed, i.e., input parameters, either as const–

parameters (simple type) or as const–references.
• You must not use magic constants literally, rather you should define useful names either as

constants or as enumerations of constants.

• TheReasons compiler can statically check that the constant variable is not changed, whenever the
explicit possibilities are not employed.

• A reader of the code can rely that the state of the object represented by the variable is not
changed inbetween two usages.

3.3 Ordering
Think of searching a name in an unordered phone book...

• WheneverRecommendations there is no apparent reason against it, you must order the entries alphabetically,
i.e., once the parts of your code have been grouped (possibly in nested groups) within each
basic group all entries must be sorted in ascending order.

• The ordering of operator–implementation must follow descending order in priority level,
i.e., high priority operators must be declared or defined before low priority operators.

operator description associativity over-
loadable

:: scope resolution left-to-right no
::* pointer to member no
++ -- postfix increment and decrement yes
() function call yes
[] array subscripting yes
. element selection by reference no
-> element selection through pointer yes
typeid() run–time type information no
const cast type cast no
dynamic cast type cast no
reinterpret cast type cast no
static cast type cast no
++ -- prefix increment and decrement yes
+ - unary plus and minus yes
! ˜ logical NOT and bitwise NOT yes
(type) type cast yes
* indirection (dereference) yes
& address–of (reference) yes
sizeof size-of no
new new[] dynamic memory allocation yes
delete delete[] dynamic memory deallocation right-to-left yes
.* pointer to member by reference no
->* pointer to member by pointer left-to-right yes
* / % multiplication, division, and remainder yes
+ - addition and subtraction yes
<< >> bitwise left–shift and right–shift yes
< <= less–than and less–than–or–equal–to yes
> >= greater–than and greater–than–or–equal–to yes
== != equal–to and not–equal–to yes



Programming style guide (v1.3)
3 Programming discipline guide

Page
28 of 39

& bitwise AND yes
ˆ bitwise XOR (exclusive or) yes
| bitwise OR (inclusive or) yes
&& logical AND yes
|| logical OR yes
c?t:f ternary conditional right-to-left no
= direct assignment yes
+= -= assignment by sum and difference yes
*= /= %= assignment by product, quotient, and remainder yes
<<= >>= assignment by bitwise left–shift and right–shift yes
&= ˆ= |= assignment by bitwise AND, XOR, and OR yes
throw throw operator (not available)
, Comma left-to-right yes

Table 1: C++ operators and their priorities

• ANotes precedence table, while mostly adequate, cannot resolve a few details. In particular,
note that the ternary operator allows any arbitrary expression as its middle operand, despite
being listed as having higher precedence than the assignment and comma operators. Thus
a ? b , c : d is interpreted as a ? (b, c) : d, and not as the meaningless (a
? b), (c : d).

• Also note that the immediate, unparenthesized result of a C cast expression cannot be the
operand of sizeof. Therefore, sizeof(int)*x is interpreted as (sizeof(int))*x and
not sizeof((int)*x).

3.4 Namespaces
They provide some privacy for names.

• YouRecommendations must not declare anything in the standard namespace std.
• You must not place a using declaration in a header file.
• You should avoid the using declaration, rather use a short namespace alias and write the

namespace classifier.
• You should use an unnamed namespace if you need to use file local declarations in a source

file.
• You should not use the using–directive to make all names from a namespace available,

use the corresponding classifiers.
• You should not use unnamed namespaces in header files.
• You can use the using–directive on the block level of functions to introduce individual

names.

• DeclarationsReasons in the std–namespace result in undefined, and unportable behavior.
• If there is a name clash within two namespaces you end up writing the classifiers anyway.
• If the clash appears during on–going development, you may end up calling the wrong

function.

3.5 Construction, assignment, and destruction
Think twice, it’s crucial.

• YouRecommendations must always declare the default constructor, the destructor, the copy–constructor, and
the assignment operator.



Programming style guide (v1.3)
3 Programming discipline guide

Page
29 of 39

• If you want the compiler generated versions, you must comment the declarations, to make
implicitly clear that the omission is intended.

• You must use private declaration if the compiler generated versions for constructors and
assignment operator are not sufficient, i.e., when you don’t want the compiler generate the
copy–constructor and/or the assignment operator.

• You must declare the destructor virtual when you have at least one virtual member or you
expect the class being extended.

• You must declare the return type of the assignment operator to be a constant reference.
• You must initialize the objects after the : in the constructor.
• You must use the explicit construction whenever the constructor takes only one argu-

ment, or clearly comment why the constructor is intended to be used for type conversion.
• You must not throw exceptions in a destructor.
• You should limit the work done in a constructor to such operations that do not throw ex-

ceptions, i.e., that are guaranteed to terminate (for instance they should not wait for input
of any kind), and that do not call virtual functions.� �

// We can live with the compiler generated versions.
class SomeThing {
public:
// SomeThing(const SomeThing& S);
// const SomeThing& operator=(const SomeThing& S);
...

};

// We cannot live with the compiler generated versions
// and we think we don’t need an implementation.
class SomeThing {
private:
SomeThing(const SomeThing& S);
const SomeThing& operator=(const SomeThing& S);
...

};� �
• PrivateReasons declarations generate compile time errors when copying or assigning is needed but

(still) not implemented.
• With a virtual destructor you make sure that the destructor of the derived class is called

when you delete the base class object.
• With a constant reference as return type of the assignment operator you make sure that the

difficult to interpret (a=b)=c–construction can be detected.
• Direct correct construction of members is more efficient.
• It is difficult to report errors from a constructor.
• An exception may leave the object in an undefined state which may cause problems later

on.
• Virtual functions are still not dispatched to the according level, which might result in un-

expected behavior.
• If you need complex initialization, consider to construct the object first the easy way and

then call a corresponding initialization method, e.g., instead of passing a file to the con-
structor where the object should be constructed from, construct the object and call a read
method.

• Use of explicit avoids implicit type conversions.

3.6 Name coherence
A monkey is a monkey, it doesn’t matter where.

• YouRecommendations must use the same name if you mean the same thing.
• You must use the same name for the parameters both in declaration and in definition.



Programming style guide (v1.3)
3 Programming discipline guide

Page
30 of 39

3.7 Class and template design
It is not only a matter of taste.

3.7.1 Abstract classes, Do–ables
• YouRecommendations should use a verb converted to an adjective to define an abstract class.� �
class Comparable {
...

};

class Insertable {
...

};� �
3.7.2 Liskov’s substitution principle

The Liskov’s substitution principle states that all classes derived from a base class should be
interchangeable when used as a base class.

The idea is that users of a class should be able to count on similar behavior from all classes that
derive from a base class. No special code should be necessary to qualify an object before using
it.

3.7.3 Open/Closed principle

The Open/Closed principle states that a class must be open and closed where

• open means a class has the ability to be extended.
• closed means a class is closed for modifications other than extension.

The idea is once a class has been approved for use having gone through code reviews, unit tests,
and other qualifying procedures, you don’t want to change the class very much, just extend it.

The Open/Closed principle is a pitch for stability. A system is extended by adding new code
not by changing already working code. Programmers often don’t feel comfortable changing
old code, because it works!

In practice the Open/Closed principle simply means making good use of abstraction and poly-
morphism; abstraction to factor out common processes and ideas, and inheritance to create an
interface that must be adhered to by derived classes.

3.8 Declaration
• YouRecommendations must declare and define classes and variables in the smallest possible scope.
• You must declare loop variables in the for()–construction whenever their lifetime ends

right after the loop.
• You must not declare any other variable in the for()–construction.
• You should declare loop variables for while–loops as close as possible before the loop.



Programming style guide (v1.3)
3 Programming discipline guide

Page
31 of 39

� �
for(unsigned int i(0);i<N;++i) ...

bool isDone(false);
while(!isDone) {
...

}� �
3.9 Template definitions
• YouRecommendations must comment what operations you expect a template parameter to have implemented.

C++ does not enforce such contracts.
• You must use the this–pointer to access member functions in templates. This avoids the

possibility that an unwanted, for instance, in the context available global, function is called.

3.10 Types and conversions
• Type conversions must always be done explicitly. Never rely on implicit type conversion.
• Types that are local to one file only should be declared inside that file.� �
floatValue = static cast<float>(intValue);� �

3.11 Methods and functions
The methods and functions are the verbs of the programming language.

• WheneverRecommendations you define a function or method, you should think carefully about the scope of
the functions: global, class static, class member, or class non–member.

• You should declare file local global functions as static.
• You should avoid a previous declaration of a file local function, when the function can be

defined right away.

3.11.1 Names
• TheRecommendations name of the class is implicit, and you should avoid it in a method name.� �
class Segment {
...
double Length(void) const;

}� �
3.11.2 Access methods
• YouRecommendations must use the name of a class attribute written with leading uppercase letter as the name

of a member function to access the attribute of a class by reference.



Programming style guide (v1.3)
3 Programming discipline guide

Page
32 of 39

� �
class Person {
private:
unsigned int age;
String name;

public:
const unsigned int& Age() const { return age; }
unsigned int& Age() { return age; }

const String& Name() const { return name; }
String& Name() { return name; }

}� �
3.11.3 Get and set
• YouRecommendations must use for Set/Get for setting and getting of static variables.
• You should use Set/Get only if really something is computed.
• You should use Set/Get only if side–effects take place.� �
class Particle {
private:
double radius;
double mass;
double density;

public:
// Sets new radius and recomputes mass.

void SetRadius(const double radius ) {
radius=radius ;
mass=4.0/3.0∗pi∗radius∗radius∗radius∗density;

}
}� �

3.11.4 Friend declarations

Friend declarations are implicitly public (even if the private keyword is placed before!).

• You should avoid any side effect in a friend method.

3.11.5 Verbs

Methods should use standardized verbs to pass implicit information to the programmer.

• Compute: indicates that possibly something time consuming is computed.
• Find: indicates that possibly a time consuming search operation takes plane, similarly for
FindFirst..., FindLast..., FindClosest...

• Lookup: indicates that a fast search operation takes place.
• Initialize: indicates that a one time operation is taken place.

• Can: indicates whether the object has a specific capability.
• Has: indicates whether the object has a specific property.
• Is: indicates whether the object is of a certain kind.
• Should: indicates whether the object provides some hints.



Programming style guide (v1.3)
3 Programming discipline guide

Page
33 of 39

• You must not use negated boolean variable names.� �
const bool can handle(CanHandle());
const bool has cache(HasCache());
const bool is visible(IsVisible());
const bool should sort(ShouldSort());

const bool isError;� �
• TheReasons programmer is forced to use meaningful names.
• Double negation in logical expressions is avoided (What does !is not error actually

mean?).

• YouRecommendations should use complementary names for complementary actions.
• You should avoid abbreviations of verbs.
• You should use commonly used abbreviations of non–verbs.� �
// examples of complementary verbs include:
// get/set, add/remove, create/destroy, start/stop,
// insert/delete, increment/decrement, old/new, begin/end,
// first/last, up/down, min/max, next/previous, old/new,
// open/close, show/hide, suspend/resume

void ReadCommand(void); // NOT: ReadCmd(void);
void CopyCommand(void); // NOT: CpCommand(void);
void InitializeStorage(void); // NOT: InitStorage(void);

void HtmlReader(void); // NOT: HypertextMarkupLanguageReader()� �
• ComplexityReasons is reduced by symmetry.
• You automatically add documentation to your code.

3.12 Preprocessor usage
Useful and evil, take care.

3.12.1 include directive
• YouRecommendations must not use relative file names in include directives.
• You must use the directive #include "filename.h" for user–prepared include files and

the directive #include <filename.h> for include files from system libraries.
• You must give preference to forward declarations instead of including the entire class dec-

laration, whenever the header file just uses this class with pointers or references.
• You should give preference to forward declarations instead of prefixing the point or refer-

ence with the class keyword.
• You should include the files in the following group order: local include files, library include

files, C++ include files, C include files. Within each group, you should order alphabetically.

• TheReasons compiler usually has the ability to locate the include files. Relative filename would
require a certain directory structure in the file system which might not be convenient in
certain environments.

• A forward declaration does not produce a dependency in the file graph, which might reduce
the recompilation effort whenever the class is changed.

• Forward declarations grouped at the beginning of the file document what other classes are
using.



Programming style guide (v1.3)
3 Programming discipline guide

Page
34 of 39

3.12.2 define directive
• YouRecommendations must undefine macro definitions that are intended for file local use only.
• You must document side effects of macro usage.
• You should undefine macro definitions as early as possible.
• You should use #if defined instead of #ifdef.
• You should prefer #if SOMETHING over #ifdef SOMETHING.
• You should avoid side effects when defining macros.
• You should avoid macro definitions, rather use inline functions.
• You should consider templates and template specifications for such inline functions.
• You should concentrate the defines in a single file which is included where needed.� �
#if NOT YET IMPLEMENTED

#if OBSOLETE

#if TEMP DISABLED� �
• TheReasons #if defined–form requires the macro to be defined, whereas the simple #ifdef–

form silently ignores code lines.
• The #if–form allows a definition of the macro to 0 with the effect that the section is

skipped as well, whereas the simple #ifdef–form always would include the section.
• Having macros defined in a scope larger than a file may easily produce name clashes with

other packages or libraries, if the macro is not undefined properly.

3.13 Variables and parameters
• VariablesRecommendations must be initialized where they are declared, whenever this is possible.
• You must not use static or global variables of class type (including standard library objects).

Be aware that in C++ there is no order defined for constructor calls of global variables
across compilation units.

• Variables must not be initialized to a merely phony value.
• Variables must not have a dual meaning. If you need a new variable with a new meaning,

declare and use a new one.
• You must use the same names for parameters in declarations and definitions of functions.
• You should use the auto-type in C++11 only when the type is not known, otherwise a

typedef to shorten names can be used.
• You should minimize the use of global variables.
• You should use assert for parameter checking.
• You should specify first input and than output parameters in the parameter list.
• You should give preference to reference parameters rather than pointer parameters.� �
SomeObject obj(SomeMethod());

int x, y, z; // here it makes no sense to initialize
getCenter(&x, &y, &z);� �
• ConstructingReasons objects during declaration is more efficient, otherwise default construction

takes place, and later a copy operation is to be performed. (Note that the gcc compiler
offers the -felide-constructors option which avoids the unnecessary temporary
object.)

• All variables/objects are in a consistent states unless for well known reasons. Consider
writing a comment if you cannot initialize a variable to a known state.

• References guarantee that the object already exists whereas pointers may be 0, indicating
that the object is still not constructed.

• Parameter ordering in function calls according type can have a performance impact.



Programming style guide (v1.3)
3 Programming discipline guide

Page
35 of 39

3.14 Constants
• You must declare everything const that you can.
• YouRecommendations must you 0 not NULL for pointer values.
• You should use the nullptr keyword of the C++11 standard (possibly with an appropriate

define for older standards).
• You should use the constexpr keyword of the C++11 standard.
• You can use the implicit conversion of integral, floating point or pointer types to a boolean

value.� �
if(errorNum==6) ...

if(nLines) ...
if(value) ...
if(pointer) ...� �
• TheReasons compiler helps you to find side effect.
• More efficient code can be generated often by the compiler.
• The C++–standard states that zero ints and floats are converted to false. The same is true

for the pointer types.
• There is a clear visual difference between comparing to zero and comparing to any other

value.

3.15 Loops
Without loops no general computability.

• YouRecommendations should use the loop your algorithm needs (loops have a semantic).
• You should include the lower limit and exclude upper limit in intervals and iterations.
• You should avoid the use of continue and break.
• You should use for(;;) (read: forever) for an infinite loop.
• You should use for loops for counting loops.
• You should use while loops for conditions that change during the iterations.
• You should use do-while loops when you require that the iteration is performed at least

once.
• You can use while(1) for an infinite loop.
• You can use continue and break if you really need.
• You can use goto if you really need it.� �

for(...) {
while(...) {

...
if(disaster)

goto LabelDisaster;
}

}
...

LabelDisaster:
// code to clean up the mess� �

• TheReasons visual impact of for(;;) is sufficiently clear that there happens something special
here. Consider writing an appropriate comment.

• A clear semantic of a loop is more important than a limited use of loop constructs.
• Unstructured code sometimes is more efficient and shorter than structured code.



Programming style guide (v1.3)
3 Programming discipline guide

Page
36 of 39

3.16 Conditions
Clear conditions reveal clear understanding.

• TheRecommendations nominal case should be put in the if-part and the exceptional case in the else-part of
an if statement.

• You must not use assignments in conditions.
• You should avoid complex conditional expressions. Introduce temporary boolean variables

instead.� �
std::ofstream out file(fileName);
if(out file) {
...

}

const bool is finished((element no<0)||(element no>max element));
const bool is repeated entry(element no==last element);
if(is finished | | is repeated entry) {
...

}� �
• ForReasons debugging purposes, when writing on a single line, it is not apparent whether the test

is really true or not. Remember that setting breakpoints and tracing in most debuggers is
still line oriented.

• Conditionals with executable statements are just very difficult to read.

3.17 Overloading and overwriting
Talking is talking, and walking is walking.

• YouRecommendations must overload operators only with operations that make common sense, in most cases
just mathematical operations.

• You must overload methods only with variations that have the same semantics, i.e., that can
be used for the same purpose.

• You must maintain the semantics when you overwrite a method in the derived class, i.e.,
the derived class should at most specialize the semantics of the method in the base class.

• You should avoid overloading of methods with template parameters, whenever there is a
risk that the template instantiation might produce the same signature more than once, rather
use template specialization.

• You should be aware that classes overloading the &–operator cannot be declared forwarded
any more.� �

class String {
...
bool Contains(const String& s) const;
bool Contains(const char c) const;
...

};

template <typename T>
class Container {
...
void Insert(const int element);
void Insert(const T element); // what happens if T==int
...

}� �



Programming style guide (v1.3)
3 Programming discipline guide

Page
37 of 39

3.18 Units
• IfRecommendations the program deals with physical units, use a unit suffix in case the unit is not the base

unit.� �
double distance; // here distance is implicitly in [m]
double distance km; // here is it made clear distance in in [km]� �

3.19 Default values
• YouRecommendations must make a label for an error state.
• You should make it the first label if possible.� �
enum { STATE ERR, STATE OPEN, STATE RUNNING, STATE DYING};� �
• ItReasons is often useful to be able to say an enum is not in any of its valid states.

3.20 Test code
First thought, first fault.

• YouRecommendations should first think on how you would implement test code that checks that your algo-
rithm to be implemented is correct.

• You should think of starting coding by implementing the test code.

• IfReasons you plan to implement a sorting algorithm, first implement the code that checks that the
output of your algorithm is really sorted.

3.21 Exception handling
An exception should be an exception.

• ExceptionRecommendations classes must have Exception as suffix.
• You must document that an exception is being thrown in your method comment header.
• You must draw a clear decision what is considered an exception and what can be a simple

assert. The main difference, obviously, is the instant in time when the things are checked:
asserts at compile time during debugging, exceptions at run time in production code.

• You should not use sophisticated exception hierarchies.
• Instead, you should create one exception per library or namespace and have an exception

reason within that exception to indicate the type of the exception.
• You should create a macro for throwing the exception so that you can transparently include

FILE and LINE in the exception.
• The exception should take one string argument so developers can include all the informa-

tion they need in the exception without having to create a derived exception to add a few
more pieces of data.

• Throwing an exception should take only one line of code.
• You can also automatically take a time stamp and get the thread ID.



Programming style guide (v1.3)
3 Programming discipline guide

Page
38 of 39

• You can use derived exceptions, if you think you need to create derived exceptions, but you
must derive them from your libraries’ base exception class.

• You can include a stack trace of where the exception happened to provide additional infor-
mation in complex call graphs.

• CreatingReasons very elaborate exception hierarchies is a waste of time. Nobody ends up caring
and all the effort goes to waste.

• For example, for your operation system encapsulation library, make an exception called
OsEncapException.

• By using just one exception you make it easy for people using your code to catch your
exception.

• If you have many exceptions it is difficult for anyone to handle those, especially in the right
order.

• Whenever you add more exceptions to existing ones, you will break existing code that
thinks they are handling all your exceptions.

• Having one base class exception, allows your library users to catch the base class exception
if they wish.

• Most exceptions are thrown in situations where the code can’t do anything about it anyway,
so creating lots of exceptions to express the very little thing that something specific went
wrong with a separate class is time consuming and confusing for the user.

• Exceptions are mostly used for dealing with abnormal situations, they should not be thought
of as normal program flow. The additional information provided by throwing the exception
should be useful information.� �

// The condition causes the exception to be thrown when true.
// msg is a local context.
// reason is the specific error code for the exception,
// if you think you need it.
THROW NAMESPACE EX IF(cond,msg,reason);� �

3.22 Version control systems
• YouRecommendations must not use RCS/CVS/SVN keywords.

• UsingReasons keyword substitution changes the file in places which generate unuseful hits in file
comparisons.

• The file’s content should indicate a revision, the meta data in the revision control system
should describe further issues.



Programming style guide (v1.3)
4 Documenting guide

Page
39 of 39

4 Documenting guide

This sections is not a tutorial, not even a short description, of Doxygen. Please refer to its
documentation for more details. The purpose of this section is to explain how to use the very
flexible tool in a manner being consistent with the style and programming discipline described
earlier.

4.1 Documentation tool
• YouRecommendations should use the Doxygen documentation tool to document your sources.
• You should use the ///–style when you use the Doxygen documentation tool.
• You should use the \–form of structural commands, rather than the @–form.
• You should use the java–doc–autobrief–feature of Doxygen, i.e., the first part of the doc-

umenting block until a dot followed by a blank or newline is encountered is automatically
considered the brief description.

• You should not put documentation after members, variables, and parameters, i.e., restrain
from using the //<–form of comments, whenever you need more than just a brief com-
ment.

• You should not use the HTML-tags to introduce documentation format.� �
/// This is an example class.
/// There is not much to say about it, but we could write
/// a whole novel about documenting classes.
class Example {
...

}� �
• TheReasons ///–style gives the most uniform visual effect and does not introduce additional al-

most empty lines.
• In an after member documentation block you cannot use certain structural commands.
• HTML-tags spoil the fluent reading of the comment. The built-in formating rules of Doxy-

gen, for instance for lists, are much simpler and do not consume much space.

4.2 Specific requirements

The documentation tool Doxygen imposes certain requirements such that all documentation
blocks are visible in the generated documentation.

• YouRecommendations must include a documentation block on file level to obtain the documentation of the
global objects in this file.

• You must include a documentation block on namespace level to obtain the documentation
of its contained objects.

• You must include a documentation block on class level to obtain the documentation of its
members.


	Introduction
	Purpose and scope
	Revision history
	References
	Writing conventions

	Style guide
	Comments
	Comments for code and classes
	Comments for variable and constant declarations or definitions
	Comments for parameters
	Special purpose comments (gotchas)

	Names
	Type related names
	Namespaces
	Classes
	Templates
	Types

	Class methods and functions
	Class attributes and variables
	Global variables
	Local variables
	Argument names
	Pointer and reference variables
	Static variables

	Enumerations
	Constants
	Labels
	File guards
	Macro definitions
	C functions
	Abbreviations
	Files

	Formatting
	Block structure and white space
	Placement of braces, parenthesis, and the like
	Indentation
	Blank spaces
	Blank lines

	Layout of control structures
	if–then–else
	while and do–while
	for
	switch
	Try–catch
	Conditional expression

	Block layout
	Header file layout
	Class layout
	Source file layout
	Method, variable, and parameter layout

	Splitting lines


	Programming discipline guide
	Comments
	Const correctness
	Ordering
	Namespaces
	Construction, assignment, and destruction
	Name coherence
	Class and template design
	Abstract classes, Do–ables
	Liskov's substitution principle
	Open/Closed principle

	Declaration
	Template definitions
	Types and conversions
	Methods and functions
	Names
	Access methods
	Get and set
	Friend declarations
	Verbs

	Preprocessor usage
	include directive
	define directive

	Variables and parameters
	Constants
	Loops
	Conditions
	Overloading and overwriting
	Units
	Default values
	Test code
	Exception handling
	Version control systems

	Documenting guide
	Documentation tool
	Specific requirements


