
Some interesting tools

use them or don’t use them

LIA
Universidade de Vigo
Escola Superior de Enxeñarı́a Informática
E–32004 Ourense

http://lia.ei.uvigo.es
mailto:formella@uvigo.es

Contact: Arno Formella

Reference: LIA-DOC-tools
Version: 1.3

Date: 25/11/2015
Pages: 37

http://lia.ei.uvigo.es
mailto:formella@uvigo.es

Some interesting tools (v1.3)
Contents

Page
2 of 37

Contents

1 Introduction 3
1.1 Purpose and scope . 3
1.2 Revision history . 3
1.3 References . 3

2 dar: Backup 4
2.1 Setup of the configuration file . 4
2.2 Invocation of dar . 8

2.2.1 Full backup . 8
2.2.2 Differential backup . 8
2.2.3 Restoring the backup . 8
2.2.4 Restoring some files only . 9

3 git: Version control 10
3.1 Initialization of git . 10
3.2 Working with git . 13
3.3 Using git to move your files from system to system 13

3.3.1 Preparing a USB memory pen drive 13
3.3.2 Setting up an empty repository . 14
3.3.3 Cloning the empty repository onto your computers 14

3.4 Tips and tricks for git . 15
3.4.1 Mount points . 15

4 make: Task automation 17
4.1 Makefile for LATEX documents . 17
4.2 Makefile for C++ compilation . 17

5 markdown: Simple formatted text 18
5.1 Embedding markdown in LATEX . 18
5.2 Example . 19
5.3 markdown: Syntax . 19

5.3.1 Overview . 19
5.3.2 Block Elements . 21
5.3.3 Span Elements . 27
5.3.4 Miscellaneous . 33

6 indent: formatting of C–source files 35

Some interesting tools (v1.3)
1 Introduction

Page
3 of 37

1 Introduction

This document describes in a ready-to-use manner very convenient tools for the daily work. All
scripts and configurations files can be downloaded from our web-site http://lia.ei.uvi
go.es. Comments are welcome.

1.1 Purpose and scope

Although the descriptions in this document are tailored for a GNU/Linux environment, almost
all tools are available for Windows and Mac systems as well.

Whenever you install a new working environment you should consider making these tools avail-
able to the user. The installation process is not included here, each tool describes the installation
process in its own documentation.

The text is neither a tutorial nor a handbook; there are other sources for this type of documents.
Rather the document describes a complete minimum setup of the tools which in most typical
environments is sufficient to start with. It is clearly highlighted which parts must be adapted to
fit personal needs.

Especially when you are working with or within the LIA research group, you should know and
use these tools.

1.2 Revision history

Version 1.3:

• Markdown usage added.
• Usage of mount points for sharing file trees in various git-managed repositories

added.

Version 1.2:

• Sections for dar (backup) recovering added.
• Section for make (task automation) added.

Version 1.1:

• Section for formatting C–source files added.
• Error in cd–command in setting up an empty repository in the git section fixed.

Version 1.0:
This is the initial document written in summer of 2010.

1.3 References

http://lia.ei.uvigo.es
http://lia.ei.uvigo.es

Some interesting tools (v1.3)
2 dar: Backup

Page
4 of 37

2 dar: Backup

Hardware fails, that is a fact. Therefore, you must backup at least all files that cannot be restored
by other means, i.e., escentially you must backup your own work. This section briefly describes
how to use the disk archiving tool dar to make first a full backup and then differential backups
of your home directory. As principal backup media, we assume an external USB harddrive.

First of all, doing a good backup is not just copying files, rather you want to be able to restore
a true snapshot of a file system including correct ownership for the files, correct time stamps,
soft- and hardlinks, and much more. Hence, you need a tool, for instance dar.

dar, available at http://dar.linux.free.fr or http://dar.sourceforge.ne
t is a GPL (v2) licensed software package to make backups of entire directory trees. dar is a
shell command tool. There are GUIs available. The documentation is extensive and well done.
dar can be tailored to make effective backups of entire systems. The main author is Denis
Corbin, this document deals with version 2.3.10.

In order to make your backups, in the on-going you will see the most basic steps; feel free—
with the help of the documentation of dar—to extend the suggestions.

Note• that we either store a full backup or a differential backup towards such a full backup, i.e.,
we do not iterate differential backups (a choice you can take if you like, dar is prepared for
doing that).

2.1 Setup of the configuration file

dar can use a configuration file named .darrc in the users home directory (note, there are
more options available to do the job). The listing below shows such a configuration file where
we do the following:

• We divide the backup into slices of at most 600MB (-s option), so we can write them on
CD whenever we need.

• We compress all files for which compression pays–off (-z and -Z options), so we save
some disk space.

• We exclude temporary files and some files for security reasons (-X and -P options), so
we save disk space and don’t exhibit secrets.

• We make use of case-insensitive filenames and regular expressions. (-an and -ar op-
tions), so we are a bit more flexible.

• We maintain excluded directories as empty directories (-D option), so at least we know
there has been something.

• We restore without any option (default run), so at least this will be easy after a crash.

Lines starting with a # are comment lines. The entries are sorted within groups in alphabetic
order.� �

#
(c) c o p y r i g h t 2010 Arno Forme l la
f o r m e l l a @ e i . u v i g o . es , l i a . e i . u v i g o . e s
#

http://dar.linux.free.fr
http://dar.sourceforge.net
http://dar.sourceforge.net

Some interesting tools (v1.3)
2 dar: Backup

Page
5 of 37

we run dar n o r m a l l y
t o g e n e r a t e a f u l l backup
dar −c ${1?} ‘ d a t e −I ‘ f u l l −R ${HOME?}
t o g e n e r a t e a d i f f e r e n t i a l backup
dar −c ${1?} ‘ d a t e −I ‘ d i f f −R ${HOME?} −A ${2?}
t o g e n e r a t e a c a t a l o g
dar −C ${1?} ‘ d a t e −I ‘ c t l g −A ${2?}

o p t i o n s f o r a l l command v a r i a n t s
a l l :
s l i c e a lways so we can grab on CD−ROM i f we l i k e

−s 600M

−c o p t i o n , c r e a t i o n o f an a r c h i v e
c r e a t e :
compress w i t h g z i p

−z
b u t e x c l u d e from c o m p r e s s i o n t h e f o l l o w i n g f i l e t y p e s
(t h e y are u s u a l l y compressed w e l l enough)
t a k e t h e e x t e n s i o n case− i n s e n s i t i v e

−an
−Z ” ∗ . a s f ”
−Z ” ∗ . a v i ”
−Z ” ∗ . bz ”
−Z ” ∗ . b z i p ”
−Z ” ∗ . b z i p 2 ”
−Z ” ∗ . bz2 ”
−Z ” ∗ . deb ”
−Z ” ∗ . d i vx ”
−Z ” ∗ . f d f ”
−Z ” ∗ . g i f ”
−Z ” ∗ . gz ”
−Z ” ∗ . g z i p ”
−Z ” ∗ . j a r ”
−Z ” ∗ . j p g ”
−Z ” ∗ . mov”
−Z ” ∗ . mp3”
−Z ” ∗ . mp4”
−Z ” ∗ . mpeg”
−Z ” ∗ . mpg”
−Z ” ∗ . ogg ”
−Z ” ∗ . pd f ”
−Z ” ∗ . r a r ”
−Z ” ∗ . rpm”
−Z ” ∗ . swf ”
−Z ” ∗ . sxw”
−Z ” ∗ . t b z ”
−Z ” ∗ . t g z ”
−Z ” ∗ . t i f ”
−Z ” ∗ . t i f f ”
−Z ” ∗ .wma”
−Z ” ∗ .wmv”
−Z ” ∗ . z i p ”
−Z ” ∗ . 7 z ”
−Z ” ∗ . Z”

Some interesting tools (v1.3)
2 dar: Backup

Page
6 of 37

−a c a s e
c r e a t e empty d i r e c t o r i e s f o r e x c l u d e d d i r e c t o r i e s

−D
e x c l u d e t h e f o l l o w i n g c o n f i g u r a t i o n d i r e c t o r i e s o f c e r t a i n
a p p l i c a t i o n s , ca ch e s e t c .
because we don ’ t care , a f t e r a c r a s h we would
i n s t a l l t h e a p p l i c a t i o n s anyway from s c r a t c h

−P ” . adobe / ”
−P ” . a g d s e r v e r / ”
−P ” . f o n t c o n f i g / ”
−P ” . g o o g l e e a r t h / ”
−P ” . kde / ”
−P ” . l o c a l / s h a r e / Trash / ”
−P ” . l o k i / ”
−P ” . macromedia / ”
−P ” . mcop / ”
−P ” . o p e n o f f i c e . o rg2 / ”
−P ” . q t / ”
−P ” . s t r i g i / ”
−P ” . t h u m b n a i l s / ”

e x c l u d e some t h i n g s f o r s e c u r i t y r e a s o n s
−P ” . s s h / ”
−X ” . b a s h h i s t o r y ”
−X ” . f o r w a r d ”
−X ” . I C E a u t h o r i t y ”
−X ” . l e s s h s t ”
−X ” . n e t r c ”
−X ” . p r o f i l e ”
−X ” . r e c e n t l y −used ”
−X ” . r e c e n t l y −used . x b e l ”
−X ” . s u d o a s a d m i n s u c c e s s f u l ”
−X ” . v i m i n f o ”
−X ” . X a u t h o r i t y ”
−X ” . x s e s s i o n e r r o r s ”

e x c l u d e t emporary f i l e s and a u t o m a t i c a l l y g e n e r a t e d
d o c u m e n t a t i o n f i l e s as w e l l as a l l t emporary f i l e s o f
c o m p i l e r s and t h e t e x s y s t e m

−X ” d i f f . t x t ”
−X ” e r r . t x t ”
−X ” l s . t x t ”
−X ” ∗ ˜ ”
−X ” ∗ . bak ”
−X ” ∗ . swp”
−X ” . g n u p l o t h i s t o r y ”

here we s w i t c h t o r e g u l a r e x p r e s s i o n p a r s i n g f o r t h e o p t i o n s
−a r
−P ” . ∗ / \ . d / ”
−P ” . ∗ / Cache / ”
−P ” . ∗ / \ . l i b s / ”
−P ” . ∗ / doc / h tml / ”
−P ” . ∗ / doc / l a t e x / ”

we s w i t c h back t o normal f i l e g l o b b i n g
−ag
−X ” ∗ . a ”
−X ” ∗ . aux ”

Some interesting tools (v1.3)
2 dar: Backup

Page
7 of 37

−X ” ∗ . b l g ”
−X ” ∗ . d ”
−X ” ∗ . d a r ”
−X ” ∗ . d v i ”
−X ” ∗ . f l s ”
−X ” ∗ . g l g ”
−X ” ∗ . g l o ”
−X ” ∗ . g l s ”
−X ” ∗ . haux ”
−X ” ∗ . h t o c ”
−X ” ∗ . i d x ”
−X ” ∗ . i l g ”
−X ” ∗ . i n d ”
−X ” ∗ . i s t ”
−X ” ∗ . l o ”
−X ” ∗ . l o d ”
−X ” ∗ . l o f ”
−X ” ∗ . l o g ”
−X ” ∗ . l o t ”
−X ” ∗ . maf ”
−X ” ∗ . mlf∗”
−X ” ∗ . ml t ∗”
−X ” ∗ . mtc∗”
−X ” ∗ . nav ”
−X ” ∗ . o ”
−X ” ∗ . o u t ”
−X ” ∗ . p l f ∗”
−X ” ∗ . p t c ∗”
−X ” ∗ . s l f ∗”
−X ” ∗ . s l t ∗”
−X ” ∗ . snm”
−X ” ∗ . so ”
−X ” ∗ . s t c ∗”
−X ” ∗ . t o c ”
−X ” ∗ . v rb ”

SRTM t e r r a i n f i l e s a huge and u s u a l l y backuped somewhere e l s e
−X ” ∗ . h g t ”
−X ” ∗ . h g t . z i p ”

e x c l u d e dar a r c h i v e s and i s o−CD−burn f i l e s , t o o
−X ” ∗ . ∗ . d a r ”
−X ” ∗ . i s o ”

−x o p t i o n , e x t r a c t i o n o f t h e f i l e s from an a r c h i v e
no o p t i o n s , i t s h o u l d work as s i m p l e as p o s s i b l e
e x t r a c t :� �

Feel• free to modify the file patterns so they match your specific needs.

Some interesting tools (v1.3)
2 dar: Backup

Page
8 of 37

2.2 Invocation of dar

2.2.1 Full backup

Assume you want to backup your home directory on machine machine to an external USB
drive mounted at /media/disk in the already existing directory backups/machine. To make
a full backup and a lookup catalog, we run the command� �

source d a r b c k f u l l . sh / media / d i s k / backups / machine / machine� �
with the following script dar bck full.sh� �

#
(c) c o p y r i g h t 2010 Arno Forme l la
f o r m e l l a @ e i . u v i g o . es , l i a . e i . u v i g o . e s
#

g e n e r a t e f u l l backup
d a r −c ${1?} ‘ d a t e −I ‘ f u l l −R ${HOME?}
g e n e r a t e c a t a l o g
d a r −C ${1?} ‘ d a t e −I ‘ c t l g −A ${1?} ‘ d a t e −I ‘ f u l l� �

So we generate all slices of the full backup archive in the directory
/media/disk/backups/machine.
The slices are named, e.g.,
machine 2008-08-28 full.1.dar, machine 2008-08-28 full.2.dar, etc.,
and the catalog for faster future differential backups is named, e.g.,
machine 2008-08-28 ctlg.1.dar.

2.2.2 Differential backup

To make a differential backup, we run the command� �
source d a r b c k d i f f . sh \

/ media / d i s k / backups / machine / machine \
/ media / d i s k / backups / machine / machine YYYY−MM−DD ct lg� �

where you have to substitute the sequence YYYY-MM-DD according to the corresponding date of
the base full backup, with the following script dar bck diff.sh� �

#
(c) c o p y r i g h t 2010 Arno Forme l la
f o r m e l l a @ e i . u v i g o . es , l i a . e i . u v i g o . e s
#

g e n e r a t e d i f f e r e n t i a l backup
d a r −c ${1?} ‘ d a t e −I ‘ d i f f −R ${HOME?} −A ${2?}� �

2.2.3 Restoring the backup

To restore a backup back onto your system just use twice the script dar bck rest.sh

Some interesting tools (v1.3)
2 dar: Backup

Page
9 of 37

� �
#
(c) c o p y r i g h t 2010 Arno Forme l la
f o r m e l l a @ e i . u v i g o . es , l i a . e i . u v i g o . e s
#

r e s t o r e backup t o home d i r e c t o r y
d a r −x −w −r ${1?} −R ${HOME?}� �

where the first time you specify as argument the base name of the full backup and the second
time the base name of the differential backup. The additional options -w means to overwrite
files but -r confines the writing to overwriting older files by newer ones, but not the other way
round.

2.2.4 Restoring some files only

To restore or recover a specific file from your backup (for instance, in case it was deleted/lost
for some reason) run the script dar bck reco.sh� �

#
(c) c o p y r i g h t 2010 Arno Forme l la
f o r m e l l a @ e i . u v i g o . es , l i a . e i . u v i g o . e s
#

r e s t o r e backup t o home d i r e c t o r y
d a r −R ${HOME} −x ${1?} −v −g ${2?}� �

with the first argument specifing the differential backup and the second argument specifying
the file to be recovered with its relative path name starting from your home directory. If you
see a line like� �

r e s t o r i n g f i l e : / home / d e n i s / m y p r e c i o u s f i l e� �
you are done, otherwise run the script again but now with the full backup as first argument.

For more sophisticated recovering actions, please see the manual of darand consider using
dar manager.

Some interesting tools (v1.3)
3 git: Version control

Page
10 of 37

3 git: Version control

Version control (or revision control) and backup are in certain aspects quite similar, however,
their main objectives are different: the main purpose of a backup is to be able to recover
smoothly after a more or less severe crash; version control means that you can go back to
certain points in time and restore the ancient snapshot of a development, possibly maintaining
different branches within the same project.

There are many version control software tools available. git is one of them with one outstand-
ing characteristic: the possibility of serverless distributed colaboration.

git, available at http://www.git-scm.com is a GPL (v2) licensed software package for
fast, scalable, distributed revision control. git is a shell command tool. There are graphical
user interfaces (GUIs) available. The documentation is extensive and well done. There are
migration tools to/from other version control systems available. The main author is Linus
Torvalds, this document was written taking into account version 1.7.2.1, maintainer Junio C.
Hamano. Note that git is evolving.

In order to control your devolopment, in the on-going you will see the most basic setups and
simple scripts; feel free—with the help of the documentation of git—to extend the sugges-
tions.

3.1 Initialization of git

The initialization of git is—at least for a minimum configuration—quite simple. There are
some globally available settings to be done (you can even skip this part, then git will guess
the settings from your system and user installation). The most basic are telling git your user
name and your email address, so the repository will have this information ready for other users
possibly working with it. Here we use global settings on the machine (You might want to use
different data in different repositories, which is possible as well.)� �

g i t c o n f i g −−g l o b a l u s e r . name <your name>
g i t c o n f i g −−g l o b a l u s e r . e m a i l <your emai l>� �

The git–command stores such configuration data in a user local configuration file named
.gitconfig being placed in your home directory. See the git documentation for more details
about the possible content of this file.

To proceed change the directory to your working directory and initialize a new empty git
repository:� �

cd <workdi r>
g i t i n i t� �

This directory can be an empty directory when you just start a new project, or it can be an al-
ready populated one that you want to put under git version control. The command generates a
subdirectory named .git and places some intial configuration data in there. Later the directory
will contain the entire repository for the project. Mostly, you don’t have to deal directly with
the content of this directory, however, make sure that it is part of your backup.

Edit in the working directory a .gitignore–file which will contain all file patterns to be
ignored by git. An simple example of a .gitignore–file for a directory used for C++
programming is:� �

#

http://www.git-scm.com

Some interesting tools (v1.3)
3 git: Version control

Page
11 of 37

(c) c o p y r i g h t 2010 Arno Forme l la
f o r m e l l a @ e i . u v i g o . es , l i a . e i . u v i g o . e s
#

Note : t a k e care o f t r a i l i n g w h i t e space c h a r a c t e r s a t end
o f p a t t e r n g i t does n o t i g n o r e them and you may g e t
u n e x p e c t e d e f f e c t s .

t h e c o m p i l e r g e n e r a t e d f i l e s
∗ . a
∗ . d
∗ . o
∗ . l o
∗ . so
∗ . Tpo

temporary f i l e s or l i n k s f o r c o m p i l a t i o n
. depend
. make . s t a t e
CONFIG

t h e e n t i r e d o c u m e n t a t i o n f i l e s , b u t t h e l o g o s
∗ / s r c / doc / l a t e x /
∗ / s r c / doc / h tml /∗
∗ / s r c / doc / h tml / ∗ /
! ∗ / s r c / doc / h tml / doxy ∗ . png

backup f i l e s o f d i f f e r e n t t o o l s
∗ ˜
∗ . bak
∗ . swp

r e s u l t s o f d i f f and e r r o r o u t p u t , I u s u a l l y use
d i f f . t x t
e r r . t x t

a r c h i v e f i l e s
∗ . deb
∗ . t a r
∗ . t a r . bz∗
∗ . t a r . gz
∗ . t b z
∗ . t g z

a u t o c o n f c o n f i g u r a t i o n f i l e s
c o n f i g . mak
au tom4te . cache
c o n f i g . cache
c o n f i g . l o g
c o n f i g . s t a t u s
c o n f i g . mak . a u t o g e n
c o n f i g . mak . append
c o n f i g u r e� �

Some interesting tools (v1.3)
3 git: Version control

Page
12 of 37

As you see, lines starting with the #–symbol serve as comment lines. You can use wildcards as
usual. An example of a .gitignore–file for a LATEX text working directory is:� �

#
(c) c o p y r i g h t 2010 Arno Forme l la
f o r m e l l a @ e i . u v i g o . es , l i a . e i . u v i g o . e s
#

Note : t a k e care o f t r a i l i n g w h i t e space c h a r a c t e r s a t end
o f p a t t e r n g i t does n o t i g n o r e them and you may g e t
u n e x p e c t e d e f f e c t s .

I g n o r e a l l f i l e s l a t e x t o o l s g e n e r a t e as o u t p u t .
U s u a l l y t h e s e f i l e s can be re−g e n e r a t e d
w i t h t h e e x c e p t i o n o f i m p l i c i t e d a t e s i n t h e o u t p u t .
So t a k e care t h a t you use a b s o l u t e d a t e s i f a f u t u r e
re−run o f l a t e x s h o u l d produce e x a c t l y t h e same o u t p u t
∗ . b b l
∗ . d v i
∗ . g l s
∗ . h tml
∗ . i n d
∗ . pd f
∗ . ps

Do n o t i g n o r e scanned , s igned , or marked f i n a l p d f f i l e s .
!∗ f i n a l . pdf
!∗ s c a n n e d . pdf
!∗ s i g n e d . pdf

I g n o r e a l l t emporary f i l e s g e n e r a t e d by a l a t e x s y s t e m .
∗ . aux
∗ . b l g
∗ . f l s
∗ . g l g
∗ . g l o
∗ . haux
∗ . h t o c
∗ . i d x
∗ . i l g
∗ . i s t
∗ . l o d
∗ . l o f
∗ . l o g
∗ . l o t
∗ . maf
∗ . mlf∗
∗ . ml t ∗
∗ . mtc∗
∗ . nav
∗ . o u t
∗ . p l f ∗
∗ . p l t ∗
∗ . p t c ∗
∗ . s l f ∗
∗ . s l t ∗

Some interesting tools (v1.3)
3 git: Version control

Page
13 of 37

∗ . snm
∗ . s t c ∗
∗ . t o c
∗ . v rb

I g n o r e t r e e o f make t o o l
. d /� �

Note• that you must not use trailing white spaces in the patterns, because git will interpret
these characters as part of the pattern which may not be what you want.

Note• that the excluded files and directories should be related to your usual way of working and
should be adapted to your needs and the tools you employ.

3.2 Working with git

This section briefly describes how to put files under git control and how to commit modifica-
tions of the files such that they are recorded in the repository.

To put all files that do not match any pattern in your .gitignore file under control of git
execute:� �

g i t add .
g i t commit −a� �

The add–command adds all modified/created files to the index (marking files to be handled)
and the commit–command stores the necessary information into the repository. Instead of
specifying all changed and non-excluded files, you can work with individual files as well:� �

g i t add <f i l e n a m e>
g i t commit <f i l e n a m e>� �

3.3 Using git to move your files from system to system

We use git to maintain a repository on a USB-memory pen drive which serves to transfer files
from one computer to another.

3.3.1 Preparing a USB memory pen drive

You might want to install an ext3 file system on the pen drive and give it a name. In most
cases, such devices are delivered with a FAT file system. You can skip this formating of the pen
drive, however, a GNU/Linux file system has certain advantages over a FAT system.

Be aware• that you will loose all information stored on the device, so take precautions before-
hand.

Plug in your pen drive in a free slot. Once the device is mounted run� �
df� �

Some interesting tools (v1.3)
3 git: Version control

Page
14 of 37

In the listing that appears the first column indicates the device and the last column the directory
name where the device is mounted. Find your pen drive in the listing (a good candidate is
/media/disk which is used below in the examples).

Unmount the device:� �
sudo umount / media / d i s k� �

Format the device, give it a name, and synchronize the system:� �
sudo mkfs . e x t 3 / dev / sdb1
sudo e 2 l a b e l / dev / sdb1 l i a d i s k
sync� �

Warning:• be careful to use the correct device, otherwise you may destroy relevant data on
other devices.

Finally you can re-mount the device, or just remove and re-plug-in.

3.3.2 Setting up an empty repository

First setup a bare repository on the pen drive. As example we use here the repository name
lia.git. Note• that git-repositories by convention use the .git-extension. We assume that
an ext3 file system with root previleges has been installed (see previous section), hence, we
create the directory of the repository as root and change its mode so all users can act on it.� �

sudo mkdir / media / l i a d i s k / l i a . g i t
sudo chmod −R 0777 / media / l i a d i s k / l i a . g i t
cd / media / l i a d i s k / l i a . g i t
g i t −−b a r e i n i t� �

3.3.3 Cloning the empty repository onto your computers

Clone the empty git repository that we created on the pen drive onto one of your computers
(and ignore the warning emitted by git):� �

g i t c l o n e / media / l i a d i s k / l i a . g i t� �
This will create at the point in the file system where you run the command a directory named
lia containing just the .git subtree, but still no more files.

Either start a new project there or populate the directory with files your want to put under git
control. Don’t• forget to include an appropriate .gitignore–file. Work as usual with git
adding and committing files. Once everything is finished, push the changes to the pen drive, for
instance with:� �
<work−with−f i l e s >
g i t add .
g i t commit −a
g i t push o r i g i n m a s t e r� �

This will update the repository on the pen drive with your local repository content, i.e., you will
have an exact copy.

Some interesting tools (v1.3)
3 git: Version control

Page
15 of 37

� �
g i t c l o n e / media / l i a d i s k / l i a . g i t
<work−with−f i l e s >
g i t add .
g i t commit −a
g i t push o r i g i n m a s t e r� �

This again will update the repository in the pen drive with your local repository on the second
machine.

From now on, you work always in the following way:

• Plug-in your pen drive.

• Pull the repository from the pen on your computer. If nothing has been modified, you
get the appropriate message. If you forgot to plug-in your pen drive, you will get the
appropriate error message. If you must merge, you are prompted to do so.

• Work with your local repository as usual with git.

• Push the changes to the pen drive.

The whole process with git–commands (as example, there is more...):� �
g i t p u l l
<work−with−f i l e s >
g i t add .
g i t commit −a
g i t push o r i g i n m a s t e r� �

Note that we created three identical repositories. We can either work, as described, only on one
computer at a time using the pen drive to synchronize whenever we switch machine, or we can
develop on the different machines, possibly even with different users, different branches of the
project which can be merged—at the points whereever we wish (see git documentation for
more details of these more complex operations).

It may be convenient to hold at each location a bare repository as well, so you can push from
anywhere to this bare repository and synchronize the local working repository whenever you
work on that location again.

3.4 Tips and tricks for git

3.4.1 Mount points

If you want to store a file tree in various projects each one with its own repository managed
with git but without duplicating the files, hence, you work always with the very same files in
both projects but you share them in different projects (possibly with different people), you can
consider mounting directories.

For example, if you have two projects sharing the source code of some library, i.e., the .git
directories are located under the project folder:� �

p r o j e c t o n e / . g i t / . . .
/ s o m e l i b / s r c / . . .

p r o j e c t t w o / . g i t / . . .
/ s o m e l i b / s r c / . . .� �

Some interesting tools (v1.3)
3 git: Version control

Page
16 of 37

you can remove all files below the directory content to be shared in the second project and
mount the corresponding directory of the first project, e.g.,� �

cd p r o j e c t t w o / s o m e l i b / s r c
rm ∗
cd . .
sudo mount −B . . / . . / p r o j e c t o n e / s o m e l i b / s r c s r c� �

If you want to avoid the sudo-command look into the corresponding man pages. Here, only
the src-directory is shared, the some lib-directory might contain project specific files.

Note• that you take care to exclude the mount points in your backup system if necessary. Many
backup systems do not handle the mount point correctly, rather they will store/restore the file
tree twice.

Some interesting tools (v1.3)
4 make: Task automation

Page
17 of 37

4 make: Task automation

4.1 Makefile for LATEX documents

4.2 Makefile for C++ compilation

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
18 of 37

5 markdown: Simple formatted text

markdown (http://daringfireball.net/projects/markdown) is a simple text
formatting syntax which layouts the text with very few special symbols in such a way that it is
easily readable in source and can be converted into other markup languages, such as HTML.

markdown is supported by doxygen (http://www.stack.nl/˜dimitri/doxygen
/manual/markdown.html), so it is a convenient and easy to use tool in order to format
the documentation of the source code for several programming languages.

markdown can be used in LATEX–documents as well, as explained in the on-going.

5.1 Embedding markdown in LATEX

One possibility to include markdown formatted text into a LATEX-document is to use pandoc
(http://johnmacfarlane.net/pandoc) as converting tool called from a special envi-
ronment as shown here (this suggestion is taken from an answer given by G. Poore at http://
tex.stackexchange.com/questions/101717/converting-markdown-to-l
atex-in-latex:

\documentclass{article}

\usepackage{ctable}
\usepackage{fancyvrb}

\newenvironment{markdown}%
{\VerbatimEnvironment\begin{VerbatimOut}{tmp.markdown}}%
{\end{VerbatimOut}%
\immediate\write18{pandoc tmp.markdown -t latex -o tmp.tex}%
\input{tmp.tex}%

}

\begin{document}

\begin{markdown}
Example

Some text that goes on for a while.

A list:

* Item

* Another item

A table:

Program Name
---- ----
psm point set match
hms HumSAT mission software

\end{markdown}

http://daringfireball.net/projects/markdown
http://www.stack.nl/~dimitri/doxygen/manual/markdown.html
http://www.stack.nl/~dimitri/doxygen/manual/markdown.html
http://johnmacfarlane.net/pandoc
http://tex.stackexchange.com/questions/101717/converting-markdown-to-latex-in-latex
http://tex.stackexchange.com/questions/101717/converting-markdown-to-latex-in-latex
http://tex.stackexchange.com/questions/101717/converting-markdown-to-latex-in-latex

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
19 of 37

\end{document}

Note the import of the two packages ctable and fancyvrb. Make sure to use pandoc
version 1.6.0 or higher, so deeper section levels are handled correctly as well.

Assuming that above .tex–file is named example.tex, you generate the .pdf–output with
the command:� �

p d f l a t e x −−s h e l l −e s c a p e example . t e x� �
The basic syntax of markdown is given at http://daringfireball.net/project
s/markdown/syntax. Section 5.3 gives an introduction taken from there. markdown
allows also to embed directly HTML tags, which might be necessary in a certain context—for
instance while documenting code—to introduce advanced formatting. Note that these HTML–
constructs possibly will not be adequately translated to LATEX; this depends on the capabilities
of the pandoc version you use.

markdown provides support for headlines or titles, blockquotes, lists (bulleted or numbered),
code blocks (written in typewriter font), horizontal rules, hyperlinks, text highlighting (italics
and bold), and some rudimentary image including.

The following section shows how the above markdown environment is converted to LATEX.

5.2 Example

Some text that goes on for a while.

A list:

• Item

• Another item

A table:

Program Name
psm point set match
hms HumSAT mission software

5.3 markdown: Syntax

5.3.1 Overview

Philosophy

Markdown is intended to be as easy-to-read and easy-to-write as is feasible.

Readability, however, is emphasized above all else. A Markdown-formatted document should
be publishable as-is, as plain text, without looking like it’s been marked up with tags or for-
matting instructions. While Markdown’s syntax has been influenced by several existing text-to-
HTML filters — including Setext, atx, Textile, reStructuredText, Grutatext, and EtText — the
single biggest source of inspiration for Markdown’s syntax is the format of plain text email.

http://daringfireball.net/projects/markdown/syntax
http://daringfireball.net/projects/markdown/syntax
http://docutils.sourceforge.net/mirror/setext.html
http://www.aaronsw.com/2002/atx/
http://textism.com/tools/textile/
http://docutils.sourceforge.net/rst.html
http://www.triptico.com/software/grutatxt.html
http://ettext.taint.org/doc/

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
20 of 37

To this end, Markdown’s syntax is comprised entirely of punctuation characters, which punc-
tuation characters have been carefully chosen so as to look like what they mean. E.g., asterisks
around a word actually look like *emphasis*. Markdown lists look like, well, lists. Even
blockquotes look like quoted passages of text, assuming you’ve ever used email.

Inline HTML

Markdown’s syntax is intended for one purpose: to be used as a format for writing for the web.

Markdown is not a replacement for HTML, or even close to it. Its syntax is very small, cor-
responding only to a very small subset of HTML tags. The idea is not to create a syntax that
makes it easier to insert HTML tags. In my opinion, HTML tags are already easy to insert.
The idea for Markdown is to make it easy to read, write, and edit prose. HTML is a publishing
format; Markdown is a writing format. Thus, Markdown’s formatting syntax only addresses
issues that can be conveyed in plain text.

For any markup that is not covered by Markdown’s syntax, you simply use HTML itself.
There’s no need to preface it or delimit it to indicate that you’re switching from Markdown
to HTML; you just use the tags.

The only restrictions are that block-level HTML elements — e.g. <div>, <table>, <pre>,
<p>, etc. — must be separated from surrounding content by blank lines, and the start and end
tags of the block should not be indented with tabs or spaces. Markdown is smart enough not to
add extra (unwanted) <p> tags around HTML block-level tags.

For example, to add an HTML table to a Markdown article:

This is a regular paragraph.

<table>
<tr>

<td>Foo</td>
</tr>

</table>

This is another regular paragraph.

Note that Markdown formatting syntax is not processed within block-level HTML tags. E.g.,
you can’t use Markdown-style *emphasis* inside an HTML block.

Span-level HTML tags — e.g. , <cite>, or — can be used anywhere in a
Markdown paragraph, list item, or header. If you want, you can even use HTML tags instead
of Markdown formatting; e.g. if you’d prefer to use HTML <a> or tags instead of
Markdown’s link or image syntax, go right ahead.

Unlike block-level HTML tags, Markdown syntax is processed within span-level tags.

Automatic Escaping for Special Characters

In HTML, there are two characters that demand special treatment: < and &. Left angle brackets
are used to start tags; ampersands are used to denote HTML entities. If you want to use them
as literal characters, you must escape them as entities, e.g. <, and &.

Ampersands in particular are bedeviling for web writers. If you want to write about ‘AT&T’,
you need to write ‘AT&T’. You even need to escape ampersands within URLs. Thus, if
you want to link to:

http://images.google.com/images?num=30&q=larry+bird

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
21 of 37

you need to encode the URL as:

http://images.google.com/images?num=30&q=larry+bird

in your anchor tag href attribute. Needless to say, this is easy to forget, and is probably the
single most common source of HTML validation errors in otherwise well-marked-up web sites.

Markdown allows you to use these characters naturally, taking care of all the necessary escaping
for you. If you use an ampersand as part of an HTML entity, it remains unchanged; otherwise
it will be translated into &.

So, if you want to include a copyright symbol in your article, you can write:

©

and Markdown will leave it alone. But if you write:

AT&T

Markdown will translate it to:

AT&T

Similarly, because Markdown supports inline HTML, if you use angle brackets as delimiters
for HTML tags, Markdown will treat them as such. But if you write:

4 < 5

Markdown will translate it to:

4 < 5

However, inside Markdown code spans and blocks, angle brackets and ampersands are always
encoded automatically. This makes it easy to use Markdown to write about HTML code. (As
opposed to raw HTML, which is a terrible format for writing about HTML syntax, because
every single < and & in your example code needs to be escaped.)

5.3.2 Block Elements

Paragraphs and Line Breaks

A paragraph is simply one or more consecutive lines of text, separated by one or more blank
lines. (A blank line is any line that looks like a blank line — a line containing nothing but
spaces or tabs is considered blank.) Normal paragraphs should not be indented with spaces or
tabs.

The implication of the “one or more consecutive lines of text” rule is that Markdown supports
“hard-wrapped” text paragraphs. This differs significantly from most other text-to-HTML for-
matters (including Movable Type’s “Convert Line Breaks” option) which translate every line
break character in a paragraph into a
 tag.

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
22 of 37

When you do want to insert a
 break tag using Markdown, you end a line with two or
more spaces, then type return.

Yes, this takes a tad more effort to create a
, but a simplistic “every line break is
a
” rule wouldn’t work for Markdown. Markdown’s email-style blockquoting and
multi-paragraph list items work best — and look better — when you format them with hard
breaks.

Headers

Markdown supports two styles of headers, Setext and atx.

Setext-style headers are “underlined” using equal signs (for first-level headers) and dashes (for
second-level headers). For example:

This is an H1
=============

This is an H2

Any number of underlining =’s or -’s will work.

Atx-style headers use 1–6 hash characters at the start of the line, corresponding to header levels
1–6. For example:

This is an H1

This is an H2

This is an H6

Optionally, you may “close” atx-style headers. This is purely cosmetic — you can use this if
you think it looks better. The closing hashes don’t even need to match the number of hashes
used to open the header. (The number of opening hashes determines the header level.) :

This is an H1

This is an H2

This is an H3

Blockquotes

Markdown uses email-style > characters for blockquoting. If you’re familiar with quoting
passages of text in an email message, then you know how to create a blockquote in Markdown.
It looks best if you hard wrap the text and put a > before every line:

> This is a blockquote with two paragraphs. Lorem ipsum dolor sit amet,
> consectetuer adipiscing elit. Aliquam hendrerit mi posuere lectus.
> Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus.
>
> Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Suspendisse
> id sem consectetuer libero luctus adipiscing.

http://docutils.sourceforge.net/mirror/setext.html
http://www.aaronsw.com/2002/atx/

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
23 of 37

Markdown allows you to be lazy and only put the > before the first line of a hard-wrapped
paragraph:

> This is a blockquote with two paragraphs. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Aliquam hendrerit mi posuere lectus.
Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus.

> Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Suspendisse
id sem consectetuer libero luctus adipiscing.

Blockquotes can be nested (i.e. a blockquote-in-a-blockquote) by adding additional levels of
>:

> This is the first level of quoting.
>
> > This is nested blockquote.
>
> Back to the first level.

Blockquotes can contain other Markdown elements, including headers, lists, and code blocks:

> ## This is a header.
>
> 1. This is the first list item.
> 2. This is the second list item.
>
> Here’s some example code:
>
> return shell_exec("echo $input | $markdown_script");

Any decent text editor should make email-style quoting easy. For example, with BBEdit, you
can make a selection and choose Increase Quote Level from the Text menu.

Lists

Markdown supports ordered (numbered) and unordered (bulleted) lists.

Unordered lists use asterisks, pluses, and hyphens — interchangably — as list markers:

* Red
* Green
* Blue

is equivalent to:

+ Red
+ Green
+ Blue

and:

- Red
- Green
- Blue

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
24 of 37

Ordered lists use numbers followed by periods:

1. Bird
2. McHale
3. Parish

It’s important to note that the actual numbers you use to mark the list have no effect on the
HTML output Markdown produces. The HTML Markdown produces from the above list is:

Bird
McHale
Parish

If you instead wrote the list in Markdown like this:

1. Bird
1. McHale
1. Parish

or even:

3. Bird
1. McHale
8. Parish

you’d get the exact same HTML output. The point is, if you want to, you can use ordinal
numbers in your ordered Markdown lists, so that the numbers in your source match the numbers
in your published HTML. But if you want to be lazy, you don’t have to.

If you do use lazy list numbering, however, you should still start the list with the number 1. At
some point in the future, Markdown may support starting ordered lists at an arbitrary number.

List markers typically start at the left margin, but may be indented by up to three spaces. List
markers must be followed by one or more spaces or a tab.

To make lists look nice, you can wrap items with hanging indents:

* Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.

* Donec sit amet nisl. Aliquam semper ipsum sit amet velit.
Suspendisse id sem consectetuer libero luctus adipiscing.

But if you want to be lazy, you don’t have to:

* Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aliquam hendrerit mi posuere lectus. Vestibulum enim wisi,
viverra nec, fringilla in, laoreet vitae, risus.
* Donec sit amet nisl. Aliquam semper ipsum sit amet velit.
Suspendisse id sem consectetuer libero luctus adipiscing.

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
25 of 37

If list items are separated by blank lines, Markdown will wrap the items in <p> tags in the
HTML output. For example, this input:

* Bird
* Magic

will turn into:

Bird
Magic

But this:

* Bird

* Magic

will turn into:

<p>Bird</p>
<p>Magic</p>

List items may consist of multiple paragraphs. Each subsequent paragraph in a list item must
be indented by either 4 spaces or one tab:

1. This is a list item with two paragraphs. Lorem ipsum dolor
sit amet, consectetuer adipiscing elit. Aliquam hendrerit
mi posuere lectus.

Vestibulum enim wisi, viverra nec, fringilla in, laoreet
vitae, risus. Donec sit amet nisl. Aliquam semper ipsum
sit amet velit.

2. Suspendisse id sem consectetuer libero luctus adipiscing.

It looks nice if you indent every line of the subsequent paragraphs, but here again, Markdown
will allow you to be lazy:

* This is a list item with two paragraphs.

This is the second paragraph in the list item. You’re
only required to indent the first line. Lorem ipsum dolor
sit amet, consectetuer adipiscing elit.

* Another item in the same list.

To put a blockquote within a list item, the blockquote’s > delimiters need to be indented:

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
26 of 37

* A list item with a blockquote:

> This is a blockquote
> inside a list item.

To put a code block within a list item, the code block needs to be indented twice — 8 spaces or
two tabs:

* A list item with a code block:

<code goes here>

It’s worth noting that it’s possible to trigger an ordered list by accident, by writing something
like this:

1986. What a great season.

In other words, a number-period-space sequence at the beginning of a line. To avoid this, you
can backslash-escape the period:

1986\. What a great season.

Code Blocks

Pre-formatted code blocks are used for writing about programming or markup source code.
Rather than forming normal paragraphs, the lines of a code block are interpreted literally. Mark-
down wraps a code block in both <pre> and <code> tags.

To produce a code block in Markdown, simply indent every line of the block by at least 4 spaces
or 1 tab. For example, given this input:

This is a normal paragraph:

This is a code block.

Markdown will generate:

<p>This is a normal paragraph:</p>

<pre><code>This is a code block.
</code></pre>

One level of indentation — 4 spaces or 1 tab — is removed from each line of the code block.
For example, this:

Here is an example of AppleScript:

tell application "Foo"
beep

end tell

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
27 of 37

will turn into:

<p>Here is an example of AppleScript:</p>

<pre><code>tell application "Foo"
beep

end tell
</code></pre>

A code block continues until it reaches a line that is not indented (or the end of the article).

Within a code block, ampersands (&) and angle brackets (< and >) are automatically converted
into HTML entities. This makes it very easy to include example HTML source code using
Markdown — just paste it and indent it, and Markdown will handle the hassle of encoding the
ampersands and angle brackets. For example, this:

<div class="footer">
© 2004 Foo Corporation

</div>

will turn into:

<pre><code><div class="footer">
&copy; 2004 Foo Corporation

</div>
</code></pre>

Regular Markdown syntax is not processed within code blocks. E.g., asterisks are just literal
asterisks within a code block. This means it’s also easy to use Markdown to write about Mark-
down’s own syntax.

Horizontal Rules

You can produce a horizontal rule tag (<hr />) by placing three or more hyphens, asterisks,
or underscores on a line by themselves. If you wish, you may use spaces between the hyphens
or asterisks. Each of the following lines will produce a horizontal rule:

* * *

- - -

5.3.3 Span Elements

Links

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
28 of 37

Markdown supports two style of links: inline and reference.

In both styles, the link text is delimited by [square brackets].

To create an inline link, use a set of regular parentheses immediately after the link text’s closing
square bracket. Inside the parentheses, put the URL where you want the link to point, along
with an optional title for the link, surrounded in quotes. For example:

This is [an example](http://example.com/ "Title") inline link.

[This link](http://example.net/) has no title attribute.

Will produce:

<p>This is
an example inline link.</p>

<p>This link has no
title attribute.</p>

If you’re referring to a local resource on the same server, you can use relative paths:

See my [About](/about/) page for details.

Reference-style links use a second set of square brackets, inside which you place a label of your
choosing to identify the link:

This is [an example][id] reference-style link.

You can optionally use a space to separate the sets of brackets:

This is [an example] [id] reference-style link.

Then, anywhere in the document, you define your link label like this, on a line by itself:

[id]: http://example.com/ "Optional Title Here"

That is:

• Square brackets containing the link identifier (optionally indented from the left margin
using up to three spaces);

• followed by a colon;

• followed by one or more spaces (or tabs);

• followed by the URL for the link;

• optionally followed by a title attribute for the link, enclosed in double or single quotes,
or enclosed in parentheses.

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
29 of 37

The following three link definitions are equivalent:

[foo]: http://example.com/ "Optional Title Here"
[foo]: http://example.com/ ’Optional Title Here’
[foo]: http://example.com/ (Optional Title Here)

Note: There is a known bug in Markdown.pl 1.0.1 which prevents single quotes from being
used to delimit link titles.

The link URL may, optionally, be surrounded by angle brackets:

[id]: <http://example.com/> "Optional Title Here"

You can put the title attribute on the next line and use extra spaces or tabs for padding, which
tends to look better with longer URLs:

[id]: http://example.com/longish/path/to/resource/here
"Optional Title Here"

Link definitions are only used for creating links during Markdown processing, and are stripped
from your document in the HTML output.

Link definition names may consist of letters, numbers, spaces, and punctuation — but they are
not case sensitive. E.g. these two links:

[link text][a]
[link text][A]

are equivalent.

The implicit link name shortcut allows you to omit the name of the link, in which case the link
text itself is used as the name. Just use an empty set of square brackets — e.g., to link the word
“Google” to the google.com web site, you could simply write:

[Google][]

And then define the link:

[Google]: http://google.com/

Because link names may contain spaces, this shortcut even works for multiple words in the link
text:

Visit [Daring Fireball][] for more information.

And then define the link:

[Daring Fireball]: http://daringfireball.net/

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
30 of 37

Link definitions can be placed anywhere in your Markdown document. I tend to put them
immediately after each paragraph in which they’re used, but if you want, you can put them all
at the end of your document, sort of like footnotes.

Here’s an example of reference links in action:

I get 10 times more traffic from [Google] [1] than from
[Yahoo] [2] or [MSN] [3].

[1]: http://google.com/ "Google"
[2]: http://search.yahoo.com/ "Yahoo Search"
[3]: http://search.msn.com/ "MSN Search"

Using the implicit link name shortcut, you could instead write:

I get 10 times more traffic from [Google][] than from
[Yahoo][] or [MSN][].

[google]: http://google.com/ "Google"
[yahoo]: http://search.yahoo.com/ "Yahoo Search"
[msn]: http://search.msn.com/ "MSN Search"

Both of the above examples will produce the following HTML output:

<p>I get 10 times more traffic from <a href="http://google.com/"
title="Google">Google than from
Yahoo
or MSN.</p>

For comparison, here is the same paragraph written using Markdown’s inline link style:

I get 10 times more traffic from [Google](http://google.com/ "Google")
than from [Yahoo](http://search.yahoo.com/ "Yahoo Search") or
[MSN](http://search.msn.com/ "MSN Search").

The point of reference-style links is not that they’re easier to write. The point is that with
reference-style links, your document source is vastly more readable. Compare the above ex-
amples: using reference-style links, the paragraph itself is only 81 characters long; with inline-
style links, it’s 176 characters; and as raw HTML, it’s 234 characters. In the raw HTML, there’s
more markup than there is text.

With Markdown’s reference-style links, a source document much more closely resembles the
final output, as rendered in a browser. By allowing you to move the markup-related metadata
out of the paragraph, you can add links without interrupting the narrative flow of your prose.

Emphasis

Markdown treats asterisks (*) and underscores (_) as indicators of emphasis. Text wrapped
with one * or _ will be wrapped with an HTML tag; double *’s or _’s will be wrapped
with an HTML tag. E.g., this input:

single asterisks

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
31 of 37

single underscores

double asterisks

__double underscores__

will produce:

single asterisks

single underscores

double asterisks

double underscores

You can use whichever style you prefer; the lone restriction is that the same character must be
used to open and close an emphasis span.

Emphasis can be used in the middle of a word:

un*frigging*believable

But if you surround an * or _ with spaces, it’ll be treated as a literal asterisk or underscore.

To produce a literal asterisk or underscore at a position where it would otherwise be used as an
emphasis delimiter, you can backslash escape it:

this text is surrounded by literal asterisks

Code

To indicate a span of code, wrap it with backtick quotes (‘). Unlike a pre-formatted code block,
a code span indicates code within a normal paragraph. For example:

Use the ‘printf()‘ function.

will produce:

<p>Use the <code>printf()</code> function.</p>

To include a literal backtick character within a code span, you can use multiple backticks as the
opening and closing delimiters:

‘‘There is a literal backtick (‘) here.‘‘

which will produce this:

<p><code>There is a literal backtick (‘) here.</code></p>

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
32 of 37

The backtick delimiters surrounding a code span may include spaces — one after the opening,
one before the closing. This allows you to place literal backtick characters at the beginning or
end of a code span:

A single backtick in a code span: ‘‘ ‘ ‘‘

A backtick-delimited string in a code span: ‘‘ ‘foo‘ ‘‘

will produce:

<p>A single backtick in a code span: <code>‘</code></p>

<p>A backtick-delimited string in a code span: <code>‘foo‘</code></p>

With a code span, ampersands and angle brackets are encoded as HTML entities automatically,
which makes it easy to include example HTML tags. Markdown will turn this:

Please don’t use any ‘<blink>‘ tags.

into:

<p>Please don’t use any <code><blink></code> tags.</p>

You can write this:

‘—‘ is the decimal-encoded equivalent of ‘—‘.

to produce:

<p><code>&#8212;</code> is the decimal-encoded
equivalent of <code>&mdash;</code>.</p>

Images

Admittedly, it’s fairly difficult to devise a “natural” syntax for placing images into a plain text
document format.

Markdown uses an image syntax that is intended to resemble the syntax for links, allowing for
two styles: inline and reference.

Inline image syntax looks like this:

![Alt text](/path/to/img.jpg)

![Alt text](/path/to/img.jpg "Optional title")

That is:

• An exclamation mark: !;

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
33 of 37

• followed by a set of square brackets, containing the alt attribute text for the image;

• followed by a set of parentheses, containing the URL or path to the image, and an optional
title attribute enclosed in double or single quotes.

Reference-style image syntax looks like this:

![Alt text][id]

Where “id” is the name of a defined image reference. Image references are defined using syntax
identical to link references:

[id]: url/to/image "Optional title attribute"

As of this writing, Markdown has no syntax for specifying the dimensions of an image; if this
is important to you, you can simply use regular HTML tags.

5.3.4 Miscellaneous

Automatic Links

Markdown supports a shortcut style for creating “automatic” links for URLs and email ad-
dresses: simply surround the URL or email address with angle brackets. What this means is
that if you want to show the actual text of a URL or email address, and also have it be a clickable
link, you can do this:

<http://example.com/>

Markdown will turn this into:

http://example.com/

Automatic links for email addresses work similarly, except that Markdown will also perform a
bit of randomized decimal and hex entity-encoding to help obscure your address from address-
harvesting spambots. For example, Markdown will turn this:

<address@example.com>

into something like this:

<a href="mailto:addre
ss@example.co
m">address@exa
mple.com

Some interesting tools (v1.3)
5 markdown: Simple formatted text

Page
34 of 37

which will render in a browser as a clickable link to “address@example.com”.

(This sort of entity-encoding trick will indeed fool many, if not most, address-harvesting bots,
but it definitely won’t fool all of them. It’s better than nothing, but an address published in this
way will probably eventually start receiving spam.)

Backslash Escapes

Markdown allows you to use backslash escapes to generate literal characters which would oth-
erwise have special meaning in Markdown’s formatting syntax. For example, if you wanted to
surround a word with literal asterisks (instead of an HTML tag), you can use backslashes
before the asterisks, like this:

literal asterisks

Markdown provides backslash escapes for the following characters:

\ backslash
‘ backtick
* asterisk
_ underscore
{} curly braces
[] square brackets
() parentheses
hash mark

+ plus sign
- minus sign (hyphen)

. dot
! exclamation mark

Some interesting tools (v1.3)
6 indent: formatting of C–source files

Page
35 of 37

6 indent: formatting of C–source files

The classical indentcommand line program can be used to format C–source files (.c and .h
files) more or less similar to the programming style of LIA for C++. You use the following
indent profile (i.e., .indent.pro in your home directory).� �

/ /
/ / (c) c o p y r i g h t 2010 Arno F o r m e l l a
/ / f o r m e l l a @ e i . uv igo . es , l i a . e i . uv igo . e s
/ /

/ / −−blank−l i n e s −a f t e r −commas / / −bc
−−blank−l i n e s −a f t e r −d e c l a r a t i o n s / / −bad
−−blank−l i n e s −a f t e r −p r o c e d u r e s / / −bap
−−blank−l i n e s −b e f o r e−block−comments / / −bbb

/ / −−b r a c e s−a f t e r −i f − l i n e / / −b l
−−b r a c e s−a f t e r −func−def− l i n e / / −b l f

/ / −−brace−i n d e n t / / −b l i
/ / −−b r a c e s−a f t e r −s t r u c t −dec l− l i n e / / −b l s

−−b r a c e s−on−i f − l i n e / / −br
−−b r a c e s−on−func−def− l i n e / / −b r f
−−b r a c e s−on−s t r u c t −dec l− l i n e / / −b r s
−−break−a f t e r −boolean−o p e r a t o r / / −nbbo

/ / −−break−b e f o r e−boolean−o p e r a t o r / / −bbo
−−break−func t ion−dec l−a r g s / / −b fda
−−break−func t ion−dec l−a rgs−end / / −b fde
−−case−i n d e n t a t i o n 2 / / −c l i n
−−case−brace−i n d e n t a t i o n 0 / / −c b i n
−−comment−d e l i m i t e r s −on−blank− l i n e s / / −cdb

/ / −−comment− i n d e n t a t i o n / / −cn
−−c o n t i n u a t i o n −i n d e n t a t i o n 2 / / −c i n

/ / −−cont inue−a t−p a r e n t h e s e s / / −l p
−−cudd le−do−whi le / / −cdw

/ / −−cudd le−e l s e / / −ce
/ / −−d e c l a r a t i o n −comment−column / / −cdn

−−d e c l a r a t i o n −i n d e n t a t i o n 2 / / −d i n
/ / −−dont−break−func t ion−dec l−a r g s / / −nbfda
/ / −−dont−break−func t ion−dec l−a rgs−end / / −nbfde

−−dont−break−p r o c e d u r e−type / / −n p s l
/ / −−dont−cudd le−do−whi le / / −ncdw

−−dont−cudd le−e l s e / / −nce
/ / −−dont−fo rmat−comments / / −n f c a
/ / −−dont−fo rmat− f i r s t −column−comments / / −n fc1

−−dont−l i n e −up−p a r e n t h e s e s / / −n l p
−−dont− l e f t − j u s t i f y −d e c l a r a t i o n s / / −n d j
−−dont−space−s p e c i a l −s e m i c o l o n / / −n s s
−−dont−s t a r −comments / / −nsc
−−e l s e −e n d i f−column1 / / −cpn
−−fo rmat−a l l −comments / / −f c a
−−fo rmat− f i r s t −column−comments / / −f c 1

/ / −−gnu−s t y l e / / −gnu
−−honour−n e w l i n e s / / −h n l

/ / −−i g n o r e−n e w l i n e s / / −nhn l
−−i g n o r e−p r o f i l e / / −npro

Some interesting tools (v1.3)
6 indent: formatting of C–source files

Page
36 of 37

−−i n d e n t−l a b e l 1 / / − i l n
−−i n d e n t−l e v e l 2 / / −i n

/ / −−k−and−r−s t y l e / / −kr
/ / −−l e a v e−o p t i o n a l −blank− l i n e s / / −nsob
/ / −−l e a v e−p r e p r o c e s s o r −s p a c e / / − l p s
/ / −− l e f t − j u s t i f y −d e c l a r a t i o n s / / −d j
/ / −−l i n e −comments− i n d e n t a t i o n / / −dn

−−l i n e −l e n g t h 8 0 / / −l n
/ / −−l i n u x−s t y l e / / − l i n u x

−−no−blank−l i n e s −a f t e r −commas / / −nbc
/ / −−no−blank−l i n e s −a f t e r −d e c l a r a t i o n s / / −nbad
/ / −−no−blank−l i n e s −a f t e r −p r o c e d u r e s / / −nbap
/ / −−no−blank−l i n e s −b e f o r e−block−comments / / −nbbb
/ / −−no−comment−d e l i m i t e r s −on−blank− l i n e s / / −ncdb

−−no−space−a f t e r −c a s t s / / −ncs
/ / −−no−p a r a m e t e r− i n d e n t a t i o n / / −n i p

−−no−space−a f t e r −f o r / / −n s a f
−−no−space−a f t e r −func t ion−c a l l −names / / −npcs
−−no−space−a f t e r − i f / / −n s a i
−−no−space−a f t e r −p a r e n t h e s e s / / −n p r s
−−no−space−a f t e r −whi le / / −nsaw
−−no−t a b s / / −n u t

/ / −−no−v e r b o s i t y / / −nv
/ / −−o r i g i n a l / / −o r i g

−−p a r a m e t e r−i n d e n t a t i o n 2 / / −i p n
−−paren−i n d e n t a t i o n 0 / / −p i n
−−p r e s e r v e −mtime / / −pmt

/ / −−p r e p r o c e s s o r − i n d e n t a t i o n / / −pp in
/ / −−procnames−s t a r t − l i n e s / / −p s l
/ / −−space−a f t e r −c a s t / / −cs
/ / −−space−a f t e r −f o r / / −s a f
/ / −−space−a f t e r − i f / / −s a i
/ / −−space−a f t e r −p a r e n t h e s e s / / −p r s
/ / −−space−a f t e r −p r o c e d u r e−c a l l s / / −pcs
/ / −−space−a f t e r −whi le / / −saw
/ / −−space−s p e c i a l −s e m i c o l o n / / −s s
/ / −−s t a n d a r d −o u t p u t / / − s t
/ / −−s t a r t − l e f t −s i d e−of−comments / / −sc
/ / −−s t r u c t −brace− i n d e n t a t i o n / / −s b i n

−−swallow−o p t i o n a l −blank− l i n e s / / −sob
−−t ab−s i z e 2 / / − t s n

/ / −−use−t a b s / / −u t
−−v e r b o s e / / −v� �

Note• that you must specify additionally all type definitions in your sources with the -T–option.

See• the indent–manpage for further details on how to invoke the formatter.

The generated files still have some problems in not fulfilling the rigorously the LIA style rec-
ommendations:

• The closing brace of function declarations and definitions, i.e., after the parameter decla-
ration, is not put into a new line and not aligned to the suggested column.

• There are introduced to much empty lines between declarations.

Some interesting tools (v1.3)
6 indent: formatting of C–source files

Page
37 of 37

• The variables are not declared all in their own line.

• The space between switch and the following parenthesis is not removed.

• Some comments after code is broken incorrectly when they spread over more than one
line which may lead to uncompilable code.

• The pointer * is not placed directly after the typename.

• Some strings are not aligned nicely when used as literal parameters. Especially, they are
not broken up into nicely readable parts.

• Code embedded into commants is formated as comment, not as code.

• Mixed C–style and C++–style comments are not always dealt with correctly.

	Introduction
	Purpose and scope
	Revision history
	References

	dar: Backup
	Setup of the configuration file
	Invocation of dar
	Full backup
	Differential backup
	Restoring the backup
	Restoring some files only

	git: Version control
	Initialization of git
	Working with git
	Using git to move your files from system to system
	Preparing a USB memory pen drive
	Setting up an empty repository
	Cloning the empty repository onto your computers

	Tips and tricks for git
	Mount points

	make: Task automation
	Makefile for LaTeX documents
	Makefile for C++ compilation

	markdown: Simple formatted text
	Embedding markdown in LaTeX
	Example
	markdown: Syntax
	Overview
	Block Elements
	Span Elements
	Miscellaneous

	indent: formatting of C–source files

